Spectroscopic Characterization of Plasma – Chemically Functionalized and Fluorophore-Labeled Polymer Surfaces

  • Katrin Hoffmann
  • Renate Mix
  • Joerg F. Friedrich
  • Ute Resch-Genger
Part of the Reviews in Fluorescence 2008 book series (RFLU, volume 2008)


The potential of spectrofluorometry and fluorescence microscopy for the characterization and quantification of different functionalities like OH and NH2 groups at plasma-chemically modified polymer surfaces is assessed using traditional reactive dyes such as dansyl derivatives and a sophisticated VIS-excitable chromogenic and fluorogenic pyrylium label showing binding-induced spectral and intensity changes in absorption and emission. Aiming at an improved fluorometric surface analysis, based upon these measurements, several sources of uncertainty inherent to fluorescence measurements are illustrated ranging from environment-dependent dye absorption and emission features over spectral correction and nonspecific adsorption to the critical influence of label choice on the measured background. Solutions to these drawbacks are given thereby underlining the potential of fluorometry for surface analysis.


Water Contact Angle Surface Functionality Fluorescence Quantum Yield Emission Polarizer Total Internal Reflection Fluorescence Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. De Mello, Plastic fantastic?, Lab Chip 2, 31 N–36 N (2002).Google Scholar
  2. 2.
    A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heinemann, P. A. Limbach, and C. J. Seliskar, The autofluorescence of plastic materials and chips measured under laser irradiation, Lab Chip 5, 1348–1354 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    E. A. McArthur, T. Ye, J. P. Cross, S. Petoud, and E. Borguet, Fluorescence detection of surface-bound intermediates produced from UV photoreactivity of alkylsiloxane SAMs, J. Am. Chem. Soc. 126, 2260–2261 (2004).CrossRefPubMedGoogle Scholar
  4. 4.
    T. Shimada, K. Aoki, T. Nakamura, N. Tokunaga, S. Inagaki, and T. Hayashi, Functionalization on silica gel with allylsilanes. A new method of covalent attachment of organic functional groups on silica gel, J. Am. Chem. Soc. 125, 4688–4689 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    G. M. Harbers, K. Emoto, C. Greef, S. W. Metzger, H. N. Woodward, J. J. Mascali, D. W. Grainger, and M. J. Lochhead, Functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits nonspecific protein, bacterial, and mammalian cell adhesion, Chem. Mater. 19, 4405–4414 (2007).CrossRefPubMedGoogle Scholar
  6. 6.
    W. C. E. Schofield, J. McGettrick, T. J. Bradley, J. P. S. Badyal, and S. Przyborski, Rewritable DNA microarrays, J. Am. Chem. Soc. 128, 2280–2285 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    J. Kang, L. Ding, F. Lü, S. Zhang, and Y. Fang, Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution, J. Phys. D Appl. Phys. 39, 5097–5102 (2006).CrossRefGoogle Scholar
  8. 8.
    B. K. Inamori, M. Kyo, K. Matsukawa, Y. Inoue, T. Sonoda, K. Tatematsu, K. Tanizawa, T. Mori, and Y. Kataya, Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis, Anal. Chem. 80(3), 643–650 (2008).CrossRefPubMedGoogle Scholar
  9. 9.
    D. Belder and M. Ludwig, Surface modification in microchip electrophoresis, Electrophoresis 24, 3595–3606 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    A. Muck and S. Svatoš. Chemical modification of polymeric microchip devices, Talanta 74, 333–341 (2007).PubMedGoogle Scholar
  11. 11.
    A. Holländer, Labelling techniques for the chemical analysis of polymer surfaces, Surf. Interface Anal. 36, 1023–1026 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Mix, K. Hoffmann, U. Resch-Genger, R. Decker, and J. F. Friedrich, Covalent coupling of fluorophores to polymer surface-bonded functional groups, In: Polymer Surface Modification (Ed. K. L. Mittal), 4, 171–191 (2007).Google Scholar
  13. 13.
    C. Oehr, Plasma surface modification of polymers for biomedical use, Nucl. Instrum. Methods Phys. Res. B 208, 40–47 (2003).CrossRefGoogle Scholar
  14. 14.
    P. K. Chu, J. Y. Chen, L. P.Wang, and N. Huang, Plasma-surface modification of biomaterials, Mater. Sci. Eng. 36, 143–206 (2002).CrossRefGoogle Scholar
  15. 15.
    C. M. Chan, T. M. Ko, and H. Hiraoka, Polymer surface modification by plasmas and photons, Surf. Sci. Rep. 24, 1–54 (1996).CrossRefGoogle Scholar
  16. 16.
    P. Favia and R. de’Agostino, Plasma treatments and plasma deposition of polymers for biomedical applications, Surf. Coat. Technol. 98, 1102–1106 (1998).CrossRefGoogle Scholar
  17. 17.
    G. Ji, J. Fang, S. Cai, and G. Xue, Grafting onto the surface of plasma-modified fillers, Appl. Surf. Sci. 81, 63–68 (1994).CrossRefGoogle Scholar
  18. 18.
    F. Cheng, L. J. Gamble, D. W. Grainger, and D. G. Castner, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and principal component analysis of the hydrolysis, regeneration, and reactivity of N-hydroxysuccinimide-containing organic thin films, Anal. Chem. 79(22), 8781–8788 (2007).CrossRefPubMedGoogle Scholar
  19. 19.
    C. Y. Lee, G. M. Harbers, D. W. Grainger, L. J. Gamble, and D. G. Castner, Fluorescence, XPS, and TOF-SIMS surface chemical state image analysis of DNA microarrays, J. Am. Chem. Soc. 129, 9429–9438 (2007).CrossRefPubMedGoogle Scholar
  20. 20.
    X. Z. Song, B. Y. Xia, Y. Lasanajak, D. F. Smith, and R. D. Cummings, Quantifiable fluorescent glycan microarrays, Glycoconj. J. 25, 15–25 (2008).CrossRefPubMedGoogle Scholar
  21. 21.
    D. J. Benesch, G. Hungerford, K. Suhling, C. Tregidgo, J. F. Mano, and R. L. Reis, Fluorescence probe techniques to monitor protein adsorption-induced conformation changes on biodegradable polymers, J. Colloid Interface Sci. 312, 193–200 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    E. Z. Huang, H. Ji, J. W. Mays, and M. D. Dadmun, Understanding the grafting of telechelic polymers on a solid surface to form loops, Macromolecules 41, 1009–1018 (2007).CrossRefGoogle Scholar
  23. 23.
    A. Holländer, S. Kröpke, and F. Pippig, Chemical analysis of functionalized polymer surfaces, Surf. Interface Anal. 40, 379–385 (2008).CrossRefGoogle Scholar
  24. 24.
    P. Gong, G. M. Harbers, and D. W. Grainger, Multi-technique comparison of immobilized and hybridized oligonucleotide surface density on commercial amine-reactive microarray slides, Anal. Chem. 78(7), 2342–2351 (2006).CrossRefPubMedGoogle Scholar
  25. 25.
    P. Gong, C. Y. Lee, L. J. Gamble, D. G. Castner, and D. W. Grainger, Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: Characterization by surface plasmon resonance and 32P radiometric assay, Anal. Chem. 78(10), 3326–3334 (2006).CrossRefPubMedGoogle Scholar
  26. 26.
    K. E. Sapsford, L. Berti, and I. L. Medintz, Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations, Angew. Chem. Int. Ed. 45(28), 4562–4588 (2006).CrossRefGoogle Scholar
  27. 27.
    V. B. Ivanov, J. Behnisch, A. Holländer, F. Mehdorn, and H. Zimmermann, Determination of functional groups on polymer surfaces using fluorescence labelling, Surf. Interface Anal. 24, 257–262 (1996).CrossRefGoogle Scholar
  28. 28.
    S. R. Holmes-Farley and G. M. Whitesides, Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film, Langmuir 2, 266–281 (1986).CrossRefGoogle Scholar
  29. 29.
    H. J. Griesser and R. C. Chatelier, Surface characterization of plasma polymers from amine, amide and alcohol monomers, J. Appl. Polym. Sci., Appl. Polym. Symp. 46, 361–384 (1990).CrossRefGoogle Scholar
  30. 30.
    C. Henneuse-Boxus , A. de Ro, P. Bertrand, and J. Marchand-Brynaert, Covalent attachment of fluorescence probes on the PEEK-OH film surface, Polymer 41, 2339–2348 (2000).CrossRefGoogle Scholar
  31. 31.
    L. Wang, A. K. Gaigalas, and Y. Reipa, Biotechniques 38, 127–132 (2005).CrossRefPubMedGoogle Scholar
  32. 32.
    K. Hoffmann, U. Resch-Genger, R. Mix, and J. F. Friedrich, Fluorescence spectroscopic studies on plasma-chemically modified polymer surfaces with fluorophore-labeled functionalities, J. Fluoresc. 16, 441–448 (2006).CrossRefPubMedGoogle Scholar
  33. 33.
    R. G. Nuzzo and G. Smolinsky, Preparation and characterization of functionalized polyethylene surfaces, Macromolecules 17, 1013–1019 (1984).CrossRefGoogle Scholar
  34. 34.
    G. Kühn, S. Weidner, R. Decker, A. Ghode, and J. F. Friedrich, Selective surface functionalization of polyolefins by plasma treatment followed by chemical reduction. Surf. Coat. Technol. 116–119, 796–801 (1999).CrossRefGoogle Scholar
  35. 35.
    J. Friedrich, G. Kühn, R. Mix, K. Hoffmann, and U. Resch-Genger, Tailoring of polymer surfaces with monotype functional groups of variable density using chemical and plasma chemical processes, Prog. Colloid Polym. Sci. 132, 62–71 (2006).CrossRefGoogle Scholar
  36. 36.
    R. P. Haugland, Ed., Handbook of Fluorescent Probes and Research Products, 9th ed.; Molecular Probes (2002).Google Scholar
  37. 37.
    W.T. Mason, Ed., Fluorescent and Luminescent Probes for Biological Activity, 2nd ed.; Academic Press, New York (1999).Google Scholar
  38. 38.
    V. Buschmann, K. D. Weston, and M. Sauer, Spectroscopic study and evaluation of red-absorbing fluorescent dyes, Bioconjug. Chem. 14, 195–204 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    S. Dähne, U. Resch-Genger, O. S. Wolfbeis, Near-infrared dyes for high technology applications. NATO ASI Series, 3. Hightechnology – Vol. 52, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.Google Scholar
  40. 40.
    Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Structural changes accompanying intramolecular electron transfer: Focus an twisted intramolecular charge transfer states and structures, Chem. Rev. 103(10), 3899–4031 (2003).CrossRefPubMedGoogle Scholar
  41. 41.
    R. Mix, K. Hoffmann, H. J. Buschmann, J. F. Friedrich, and U. Resch-Genger, Coupling of fluorescence labels to plasma-chemically functionalized and cucurbituril modified surfaces, Vak. Forsch. Prax. 19, 31–37 (2007).CrossRefGoogle Scholar
  42. 42.
    B. K. Hoefelschweiger, A. Duerkop, and O. S. Wolfbeis, Novel type of general protein assay using a chromogenic and fluorogenic amine-reactive probe, Anal. Biochem. 344(1), 122–129 (2005).CrossRefPubMedGoogle Scholar
  43. 43.
    S. Udenfriend, S. Stein, P. Böhlen, W. Dairman, W. Leimgruber, and M. Weigele, Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range, Science 178, 871–872 (1972).CrossRefPubMedGoogle Scholar
  44. 44.
    K. Hoffmann, R. Mix, U. Resch-Genger, and J. F. Friedrich, Monitoring of amino functionalities on plasma-chemically modified polypropylene supports with a chromogenic and fluorogenic pyrylium reporter, Langmuir 23, 8411–8416 (2007).CrossRefPubMedGoogle Scholar
  45. 45.
    J. F. Friedrich, G. Kühn, R. Mix, and W. E. S. Unger, Formation of plasma polymer layers with functional groups of different type and density at polymer surfaces and their interaction with Al atoms, Polym. Process. Plasmas 1, 28–51 (2004).CrossRefGoogle Scholar
  46. 46.
    Y. Xing and E. Borguet, Specificity and sensitivity of fluorescence labeling of surface species, Langmuir 23, 684–688 (2007).CrossRefPubMedGoogle Scholar
  47. 47.
    M. Mirenda, M. G. Lagorio, and E. San Roman, Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra. Langmuir 20, 3690–3697 (2004).CrossRefPubMedGoogle Scholar
  48. 48.
    K. Hoffmann, R. Mix, U. Resch-Genger, and J. F. Friedrich, Fluorescence measurements on functionalized polymer surfaces – problems and troubleshooting, Ann. N Y Acad. Sci. 1130(1), 28–34 (2008).CrossRefPubMedGoogle Scholar
  49. 49.
    F. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3nd edn.; Springer Science and Business, New York (2006).Google Scholar
  50. 50.
    B. Ren, F. Gao, Z. Tong, and Y.Yan, Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media, Chem. Phys. Lett. 307, 55–61 (1999).CrossRefGoogle Scholar
  51. 51.
    J. Gonzalez-Benito, A. Aznar, and J. Baselga, Solvent and temperature Effects on Polymer-Coated Glass Fibers: Fluorescence of the Dansyl Moiety, J. Fluoresc. 11(4), 307–314 (2001).CrossRefGoogle Scholar
  52. 52.
    R. P. Haugland, Ed., The Handbook: A guide to fluorescent probes and labeling technologies, 10th ed. Invitrogen, Eugene, 2005.Google Scholar
  53. 53.
    J. E. Rasmussen, D. E. Bergbreiter, and G. M. Whitesides, Location and mobility of functional groups at the surface of oxidized, low-density polyethylene films, J. Am. Chem. Soc. 99(14), 4746–4756 (1977).CrossRefGoogle Scholar
  54. 54.
    M. Hennecke, I. Schneider, and J. Fuhrmann, Characterization of carboxylate sites in surface oxidized polyethylene films by fluorescence techniques, Eur. Polym. J. 22(12), 946–953 (1986).CrossRefGoogle Scholar
  55. 55.
    U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, J. Neukammer, R. Nitschke, B. Ebert, and R. Macdonald, How to improve quality assurance in fluorometry: Fluorescence-inherent sources of error and suited fluorescence standards, J. Fluoresc. 15(3), 337–362 (2005), and references therein.CrossRefPubMedGoogle Scholar
  56. 56.
    S. Nishiyama, M. Tajima, and Y. Yoshida, Polarized fluorescence of spin-coated polymeric thin films, J. Photopolym. Sci. Tech. 20(2), 257–264 (2007).CrossRefGoogle Scholar
  57. 57.
    U. Resch-Genger, D. Pfeifer, C. Monte, W. Pilz, A. Hoffmann, M. Spieles, K. Rurack, D. Taubert, B. Schoenberger, and P. Nording, Traceability in fluorometry: Part II. Spectral fluorescence standards. J. Fluoresc. 15, 325–346 (2005).Google Scholar
  58. 58.
    S. Ekgasit, G. Stengel, and W. Knoll, Concentration of dye-labeled nucleotides incorporated into DNA determined by surface plasmon resonance-surface plasmon fluorescence spectroscopy, Anal. Chem. 76, 4747–4755 (2004).CrossRefPubMedGoogle Scholar
  59. 59.
    Y. Garini, B. J. Vermolen, and I. T. Young, From micro to nano: Recent advances in high-resolution microscopy, Curr. Opin. Biotechnol. 16, 3–12 (2005).CrossRefPubMedGoogle Scholar
  60. 60.
    A. H. Nashat, M. Moronne, and M. Ferrari, Detection of functional groups and antibodies on microfabricated surfaces by confocal microscopy, Biotechnol. Bioeng. 60, 137–146 (1998).CrossRefPubMedGoogle Scholar
  61. 61.
    S. Bratskaya, D. Marinin, M. Nitschke, D. Pleul, S. Schwarz, and F. Simon, Polypropylene surface functionalization with chitosan, J. Adhes. Sci. Technol. 18, 1173–1186 (2004).CrossRefGoogle Scholar
  62. 62.
    J. E. Noble, L. Wang, K. D. Cole, and A. K. Gaigalas, The Effect of overhanging nucleotides on fluorescence properties of hybridizing oligonucleotides labeled with Alexa-488 and FAM fluorophores, Biophys. Chem. 113, 255–263 (2005).CrossRefPubMedGoogle Scholar
  63. 63.
    B. K. Wetzl, S. M. Yarmolouk, D. B. Craig, and O. S. Wolfbeis, Chameleon labels for staining and quantifying proteins, Angew. Chem. Int. Ed. 43, 5400–5402 (2004).CrossRefGoogle Scholar
  64. 64.
    A. Papra, H. G. Hicke, and D. Paul, Synthesis of peptides onto the surface of poly(ethylene terephthalate) particle track membranes, J. Appl. Polym. Sci. 74, 1669–1674 (1999).CrossRefGoogle Scholar
  65. 65.
    E. Brynda, J. Drobnik, J. Vacik, and J. Kalal, Protein sorption on polymer surfaces measured by fluorescence labels Biomed. Mater. Res. 12, 55–65 (1978).CrossRefGoogle Scholar
  66. 66.
    S. M. Yarmolouk, A. M. Kostenko, and I. Y. Dubey, Interaction of cyanine dyes with nucleic acids. Part 19: New method for the covalent labeling of oligonucleotides with pyrylium cyanine dyes, Bioorg. Med. Chem. Lett. 10, 2201–2204 (2000).CrossRefGoogle Scholar
  67. 67.
    J. L. Bricks, J. L. Slominski, M. A. Kudinova, A. I. Tolmachev, K. Rurack, U. Resch-Genger, and W. Rettig, Syntheses and photophysical properties of a series of cation-sensitive polymethine and styryl dyes, J. Photochem. Photobiol. A 132, 193–208 (2000).CrossRefGoogle Scholar
  68. 68.
    B. Garcia-Acosta, M. Comes, J. L. Bricks, M. K. Kudinova, V. V. Kurdyukov, A. I. Tolmachev, A. B. Descalzo, M. D. Marcos, R. Martinez-Manez, A. Morno, F. Sancenon, L. A. Villaescusa, K. Rurack, J. M. Barat, I. Escriche, and P. Amoros, Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines, Chem. Commun. 2239–2241 (2006).Google Scholar
  69. 69.
    H. Hachisako and R. Murakami, Intense fluorescence-inducing amphiphile in cationic dyes and its applicability, Chem. Commun. 1073–1075 (2006).Google Scholar
  70. 70.
    C. Zhang, N. Luo, and D. E. Hirt, Penetration behavior and subsurface grafting of dansyl cadaverine and polyethylene glycol (PEG) derivatives in poly(ethylene-co-acrylic acid) (EAA) film, Polymer 46, 9257–9264 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Katrin Hoffmann
    • 1
  • Renate Mix
    • 1
  • Joerg F. Friedrich
    • 1
  • Ute Resch-Genger
    • 2
  1. 1.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.Working Group Fluorescence Spectroscopy, Department IBAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations