Advertisement

Room Temperature Tryptophan Phosphorescence of Proteins in the Composition of Biological Membranes and Solutions

  • Vladimir M. Mazhul’
  • Alexander V. Timoshenko
  • Ekaterina M. Zaitseva
  • Svetlana G. Loznikova
  • Inessa V. Halets
  • Tatsiana S. Chernovets
Part of the Reviews in Fluorescence 2008 book series (RFLU, volume 2008)

Abstract

The room temperature tryptophan phosphorescence (RTTP) technique allows studying slow internal dynamics of proteins in the millisecond and second diapasons. This chapter summarizes the key findings in the field of RTTP spectroscopy, physical nature of this phenomenon, and experimental approaches to analyze the microenvironment of tryptophan residues. Representative examples of RTTP of proteins in human erythrocyte membranes and plant lectins in solutions are discussed in details taking into account the effects of detergents on biological membranes and 3D structures of lectin molecules, respectively.

Keywords

Critical Micelle Concentration Protein Data Bank Erythrocyte Membrane Tryptophan Residue Wheat Germ Agglutinin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. V. Konev, Fluorescence and phosphorescence of proteins and nucleic acids (Plenum Press, New York, 1967).Google Scholar
  2. 2.
    A. P. Demchenko, Fluorescence and dynamics in proteins, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 65–111.CrossRefGoogle Scholar
  3. 3.
    J. R. Lakowicz, Principles of fluorescence spectroscopy, 2nd edn. (Kluwer Academic/Plenum Publishers, New York, 2000).Google Scholar
  4. 4.
    S. V. Konev, V. P. Bobrovich, About the phosphorescence spectrums of proteins at different temperatures, Dokl. Acad. Nauk BSSR 10, 786–788 (1966).Google Scholar
  5. 5.
    M. L. Saviotti, W. C. Galley, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. Natl. Acad. Sci. U S A 71(10), 4154–4158 (1974).CrossRefPubMedGoogle Scholar
  6. 6.
    V. M. Mazhul’, Yu. S. Ermolaev, V. A. Bobrov, V. P. Nicolskaya, S. V. Konev, About the conformational sensibility of the parameters of tryptophan phosphorescence at room temperature of proteins of membranes and cells, Vesti Acad. Navuk BSSR, Ser. Biyal. Navuk 6, 52–56 (1976).Google Scholar
  7. 7.
    Y. Kai, K. Imacubo, Temperature dependence of the phosphorescence lifetimes of heterogenous tryptophan residues in globular proteins between 293 and 77 K, Photochem. Photobiol. 29, 261–265 (1979).CrossRefGoogle Scholar
  8. 8.
    V. M. Mazhul’, Yu. S. Ermolaev, S. V. Konev, Tryptophan phosphorescence at room temperature. A new method for studying the structural state of biological membranes and proteins in cell, J. Appl. Spectrosc. 32 (5), 530–534 (1980).CrossRefGoogle Scholar
  9. 9.
    V. M. Mazhul’, Yu. S. Ermolaev, S. V. Konev, M. A. Martynova, V. P. Nicolskaya, Zh. V. Prokopova, Investigated of internal dynamics of proteins by the method of tryptophan phosphorescence at room temperature, Biofizika 28 (6), 980–988 (1983).PubMedGoogle Scholar
  10. 10.
    J. Vanderkooi, J. W. Berger, Excited triplet states used to study biological macromolecules at room temperature, Biochim. Biophys. Acta 976, 1–27 (1989).CrossRefPubMedGoogle Scholar
  11. 11.
    G. B. Strambini, Tryptophan phosphorescence as a monitor of protein flexibility, J. Mol. Liq. 42, 155–165 (1989).CrossRefGoogle Scholar
  12. 12.
    G. B Strambini, E. Gabellieri, Temperature dependence tryptophan phosphorescence in proteins, Photochem. Photobiol. 51, 643–648 (1990).PubMedGoogle Scholar
  13. 13.
    G. B Strambini, S. S. Lehrer, Tryptophan phosphorescence of G-actin and F-actin, Eur. J. Biochem. 159, 645–651 (1991).CrossRefGoogle Scholar
  14. 14.
    J. M. Vanderkooi, Tryptophan phosphorescence from proteins at room temperature, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 113–136.CrossRefGoogle Scholar
  15. 15.
    G. B. Strambini, M. Gonnelli, Tryptophan phosphorescence in fluid solution, J. Am. Chem. Soc. 117, 7646–7651 (1995).CrossRefGoogle Scholar
  16. 16.
    M. Gonnelli, G. B. Strambini, Phosphorescence lifetime of tryptophan in proteins, Biochemistry 34, 13847–13857 (1995).CrossRefPubMedGoogle Scholar
  17. 17.
    V. Subramaniam, A. Gafni, D. G. Steel, Time-resolved tryptophan phosphorescence spectroscopy: A sensitive probe of protein folding and structure, IEEE J. Sel. Top. Quant. Electron. 2(4), 1107–1114 (1996).CrossRefGoogle Scholar
  18. 18.
    Z. Li, A. Bruce, W. C. Galley, Temperature dependence of the disulfide perturbation to the triplet state of tryptophan, Biophys. J. 61, 1364–1371 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    F. Tolgyesi, B. Ullrich, J. Fidy, Tryptophan phosphorescence signals characteristic changes in protein dynamics at physiological temperature, Biochim. Biophys. Acta 1435, 1–6 (1999).PubMedGoogle Scholar
  20. 20.
    A. Gershenson, J. A. Shauerte, L. Giver, F. H. Arnold, Tryptophan phosphorescence study of enzyme flexibility and unfolding in laboratory-evolved thermostable esterases, Biochemistry 39, 4658–4665 (2000).CrossRefPubMedGoogle Scholar
  21. 21.
    V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Intramolecular dynamics and functional activity of proteins, Biophysics 45(6), 935–959 (2000).Google Scholar
  22. 22.
    A. A. Sukhodola, G. B. Tolstorozhev, V. A. Shashilov, V. M. Mazhul’, D. G. Shcherbin, E. M. Zaitseva, Room-temperature phosphorescence of indole, tryptophan and their derivatives in solid films, in Abstracts of 9 th European conference on the spectroscopy of biological molecules (Prague, 2001) p. 224.Google Scholar
  23. 23.
    V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Phosphorescence of tryptophan residues of proteins at room temperature, J. Appl. Spectrosc. 69(2), 213–219 (2002).CrossRefGoogle Scholar
  24. 24.
    M. Gonnelli, G. B. Strambini, Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence, Biophys. Chem. 104, 155–169 (2003).CrossRefPubMedGoogle Scholar
  25. 25.
    G. B. Strambini, M. Gonnelli, Effects of urea and guanidine hydrochloride on the activity and dynamical structure of equine liver alcohol dehydrogenase, Biochemistry 25, 2471–2476 (1986).CrossRefPubMedGoogle Scholar
  26. 26.
    V. M. Mazhul’, I. V. Mjakinnik, A. N. Volkova, Intramolecular dynamics of structure of alkaline phosphatase from Escherichia coli, Proc. SPIE 2370, 706–710 (1994).Google Scholar
  27. 27.
    V. Subramaniam, N. C. H. Bergenhem, A. Gafni, D. G. Steel, Phosphorescence reveals a continued slow annealing of the protein core following reactivation of Escherichia coli alkaline phosphatase, Biochemistry 34, 1133–1136 (1995).Google Scholar
  28. 28.
    V. Subramaniam, D. G. Steel, A. Gafni, In vitro renaturation of beta-lactoglobulin A leads to a biologically active but incompletely refolded state, Protein Sci. 5, 2089–2094 (1996).CrossRefPubMedGoogle Scholar
  29. 29.
    S. Zh. Kananovich, V. M. Mazhul’, Effect of urea and high temperatures on conformation, internal dynamics and enzyme activity of Escherichia coli alkaline phosphatase, in Book of abstracts the Minerva-Gentner symposium on optical spectroscopy of biomolecular dynamics (Kloster Banz, Bad Staffelstein, 2004) p. 106.Google Scholar
  30. 30.
    S. G. Kananovich, V. M. Mazhul’, Structure and enzyme activity of Escherichia coli alkaline phosphatase at the action of urea, in Abstracts of 9 th International Summer School on Biophysics “Supramolecular structure and function” (Rovinj, 2006) p. 136.Google Scholar
  31. 31.
    S. G. Kananovich, V. M. Mazhul’, Unfolding and refolding of Escherichia coli alkaline phosphatase, in The 5 th International conference on biological physics (Gothenburg, 2004), B 05-193, p. 39.Google Scholar
  32. 32.
    J. V. Mersol, D. G. Steel, A. Gafni, Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase, Biophys. Chem. 48, 281–291 (1993).Google Scholar
  33. 33.
    V. M. Mazhul’, S. Zh. Kananovich, On the ability of a protein to exist in many partially folded states, Biophysics 49(3), 392–402 (2004).Google Scholar
  34. 34.
    V. M. Mazhul’, S. Zh. Kananovich, Effect of temperature on the internal dynamics and the conformational state of bacterial alkaline phosphatase, Biophysics 51(3) 364–369 (2006).CrossRefGoogle Scholar
  35. 35.
    V. M. Mazhul’, E. M. Zaitseva, M. M. Shavlovsky, I. M. Kuznetsova, K. K. Turoverov, Tryptophan phosphorescence of native and inactivated actin, Biophysics 46(6), 988–996 (2001).Google Scholar
  36. 36.
    V. M. Mazhul’, E. M. Zaitseva, M. M. Shavlovsky, O. V. Stepanenko, I. M. Kuznetsova, K. K. Turoverov, Monitoring of actin unfolding by room temperature tryptophan phosphorescence, Biochemistry 42, 13551–13557 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    M. Gonnelli, G. B Strambini, Glycerol effects on protein flexibility: A tryptophan phosphorescence study, Biophys. J. 65, 131–137 (1993).CrossRefPubMedGoogle Scholar
  38. 38.
    W. W. Wright, G. N. Guffanti, J. M. Vanderkooi, Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan, Biophys. J. 85, 1980–1995 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    P. Cioni, G. B. Strambini, Pressure effect on protein flexibility monomeric proteins, J. Mol. Biol. 242, 291–301 (1994).CrossRefPubMedGoogle Scholar
  40. 40.
    V. M. Mazhul’, E. M. Zaitseva, The new mechanism of enzyme activity regulation by ionic strength, J. Biosci. 24(1), 53 (1999).CrossRefGoogle Scholar
  41. 41.
    V. M. Mazhul’, E. M. Zaitseva, D. G. Shcherbin, Effects of ionic strength and temperature on large-scale internal dynamics of liver alcohol dehydrogenase, in Abstracts of 7 th conference on methods and applications of fluorescence (Amsterdam, 2001) p. 134.Google Scholar
  42. 42.
    E. M. Zaitseva, V. M. Mazhul’, pH-induced changes in aldolase internal dynamics and conformation: Fluorescence and phosphorescence study, in Abstracts of 7 th conference on methods and applications of fluorescence (Amsterdam, 2001) p. 210.Google Scholar
  43. 43.
    E. M. Zaitseva, V. M. Mazhul’, Internal dynamics of aldolase probed by room temperature time-resolved tryptophan phosphorescence, in Abstracts of 4 th international conference on biological physics (Kyoto, 2001) p. 104.Google Scholar
  44. 44.
    G. B Strambini, M. Gonnelli, Tryptophan luminescence from liver alcohol dehydrogenase in its complexes with coenzyme. A comparative study of protein conformation in solution, Biochemistry 29, 196–203 (1990).CrossRefPubMedGoogle Scholar
  45. 45.
    A. Baracca, E. Gabillieri, S. Barogi, G. Solani, Conformational changes of the mitochondrial F1-ATPase -subunit induced by nucleotide binding as observed by phosphorescence spectroscopy, J. Biol. Chem. 270(37), 21845–21851 (1995).CrossRefPubMedGoogle Scholar
  46. 46.
    V. M. Mazhul’, E. M. Zaitseva, L. G. Mitskevich, N. V. Fedurkina, B. I. Kurganov, Effects of ligands binding on muscle glycogen phosphorylase b internal dynamics, J. Biosci. 24(1), 53 (1999).CrossRefGoogle Scholar
  47. 47.
    V. M. Mazhul’, E. M. Zaitseva, L. G. Mitskievich, N. V. Fedurkina, B. I. Kurganov, Phosphorescence analysis of the intramolecular dynamics of muscle glycogen phosphorylase b, Biophysics 44(6), 975–981 (1999).Google Scholar
  48. 48.
    B. I. Kurganov, N. V. Fedurkina, L. G. Mitskievich, V. M. Mazhul’, E. M. Zaitseva, Study of muscle glycogen phosphorylase b association by means of tryptophan phosphorescence at room temperature, Dokl. Biophys. 367–369, 67–70 (1999).Google Scholar
  49. 49.
    S. Zh. Kananovich, V. M. Mazhul’. Fluorimetric analysis of the structural-dynamic state of alkaline phosphatase of Escherichia coli, J. Appl. Spectrosc. 70(5), 673–677 (2003).CrossRefGoogle Scholar
  50. 50.
    P. Cioni, L. Piras, G. B. Strambini, Tryptophan phosphorescence as a monitor of the structural role of metal ions in alkaline phosphatase, Eur. J. Biochem. 185, 573–579 (1989).CrossRefPubMedGoogle Scholar
  51. 51.
    S. Zh. Kananovich, V. M. Mazhul’, Effect of proteolysis on the internal dynamics of Escherichia coli alkaline phosphatase tested by the room-temperature phosphorescence method, in Abstracts of 9 th European conference on the spectroscopy of biological molecules (Prague, 2001) p. 61.Google Scholar
  52. 52.
    T. Horie, J. M. Vanderkooi, Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ, Biochim. Biophys. Acta 670, 294–297 (1981).PubMedGoogle Scholar
  53. 53.
    V. M. Mazhul’, S. Zh. Kananovich, Zh. V. Prokopova, Internal dynamics of membrane and cytoplasmic proteins of germ of Escherichia coli, Vesti Acad. Navuk BSSR, Ser. Biyal. Navuk 1, 60–64 (2001).Google Scholar
  54. 54.
    V. M. Mazhul’, D. G. Shcherbin, Tryptophan phosphorescence as monitor of flexibility of membrane proteins in cells, Proc. SPIE 2980, 487–494 (1987).Google Scholar
  55. 55.
    V. M. Mazhul’, V. N. Kalunov, V. A. Buravskii, A. N. Volkova, R. I. Gronskaya, Phosphorescent analysis of the grows factors action to the internal dynamics of membrane proteins of rat pheochromocytomas PC12 cells, Dokl. Acad. Nauk BSSR 39(6) 83–86 (1995).Google Scholar
  56. 56.
    V. M. Mazhul’, Zh. V. Prokopova, L. S. Ivashkevich. Mechanisms of the action of the humic preparations and peat on the functional activity of the cells, in Humic substances in biosphere (Nauka, Moskow, 1993) pp. 16–23.Google Scholar
  57. 57.
    V. Mazhul’, D. Shcherbin, I. Zavodnik, K. Rękawecka, M. Bryszewska, The effect of oxidative stress induced by t-butyl hydroperoxide on structural dynamics of membrane proteins of Chinese hamster fibroblasts, Cell Biol. Int. 23, 5, 345–350 (1999).CrossRefGoogle Scholar
  58. 58.
    V. M. Mazhul’, T. S. Chernovets, E. M. Zaitseva, D. G. Shcherbin, Action of serine proteases on intramolecular dynamics of membrane proteins of human platelets, Biophysics 47(4), 607–616 (2002).Google Scholar
  59. 59.
    T. S. Chernovets, V. M. Mazhul’, Role of protease-induced changes of internal dynamics of platelets membrane proteins in the intracellular signaling, in 28 th Meeting of the federation of European biochemical societies (Istanbul, 2002), FEBS J. p. 54.Google Scholar
  60. 60.
    V. Mazhul’, T. Chernovets, E. Zaitseva, D. Shcherbin, Slow internal dynamics of membrane proteins in mechanisms of protease-induced aggregation of platelets, Cell Biol. Int. 27, 571–578 (2003).CrossRefGoogle Scholar
  61. 61.
    V. M. Mazhul’, S. V. Konev, E. S. Lobanok, V. I. Levin, Phosphorescence analysis of structural-dynamics state of membrane proteins in the interaction of HLA-antibodies with determinants of lymphocytes receptors, Dokl. Acad. Nauk BSSR 41(5), 69–72 (1997).Google Scholar
  62. 62.
    V. M. Mazhul’, G. P. Matveikov, S. V. Konev, E. S. Kaliya, E. S. Lobanok, Reset of the structure-functional state of peripheral blood lymphocytes membranes of patients with CKB и PA, Rheumatology 6, 103–107 (1992).Google Scholar
  63. 63.
    V. M. Mazhul’, L. N. Kalituho, E. M. Zaitseva, J. V. Ivin, Brassinosteroides action to the structural-dynamics state of membrane proteins or plant cells, in Abstracts of 5 th international conference ``Regulators of the grows and development of the plant’ (Moscow, 1999) pp. 113–114.Google Scholar
  64. 64.
    V. M. Mazhul’, D. G. Shcherbin, E. M. Zaitseva, L. N. Kalituho, L. F. Kabashnicova, Tryptophan phosphorescence at room temperature of plants rootage, Dokl. Acad. Nauk BSSR 46(2), 84–87 (2002).Google Scholar
  65. 65.
    V. M. Mazhul’, L. S. Ivashkevich, D. G. Shcherbin, N. A. Pavlovskaya, G. V. Naumova, T. F. Ovchinnikova, Luminescence properties of humic substances, J. Appl. Spectrosc. 64(4), 503–508 (1997).CrossRefGoogle Scholar
  66. 66.
    V. M. Mazhul’, D. G. Shcherbin, Low-temperature phosphorescence of lipid peroxidation products, Biophysics 43(3), 431–437 (1998).Google Scholar
  67. 67.
    D. M Gilligan, V. Bennett, The junctional complex of the membrane skeleton, Semin. Hematol. 30, 74–83 (1993).PubMedGoogle Scholar
  68. 68.
    V. Bennett, A. J. Baines, Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues, Physiol. Rev. 81, 1353–1392 (2001).PubMedGoogle Scholar
  69. 69.
    L. A. Sung, C. Vera, Protofilament and hexagon: A three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton, Ann. Biomed. Eng. 31, 1314–1326 (2003).CrossRefPubMedGoogle Scholar
  70. 70.
    G. T. Dodge, C. Mitchell, D. J. Hanahan, The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes, Arch. Biochim. Biophys. 100, 119–130 (1963).CrossRefGoogle Scholar
  71. 71.
    V. Bennett, Proteins involved in membrane-cytoskeleton association in human erythrocytes: Spectrin, ankyrin, band 3, Meth. Enzymol. 96, 313–324 (1983).CrossRefPubMedGoogle Scholar
  72. 72.
    U. K. Laemmly, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680–685 (1970).CrossRefGoogle Scholar
  73. 73.
    A. M. Kazennov, M. N. Maslova, A. D. Shagabodov, Role of membrane skeleton of erythrocytes in the functioning of membrane enzymes, Dokl. Acad. Nauk BSSR 312(1), 223–226 (1990).Google Scholar
  74. 74.
    M. Maire, P. Champeil, J. V. Moller, Interaction of membrane proteins and lipids with solubilizing detergents, Biochim. Biophys. Acta 1508, 86–111 (2000).CrossRefPubMedGoogle Scholar
  75. 75.
    G. S. Menzies, K. Howland, M. T. Rae, T. A. Bramley, Stimulation of specific binding of [3H]-progesterone to bovine luteal cell-surface membranes: Specificity of digitonin, Mol. Cell. Endocrinol. 153, 57–69 (1999).CrossRefPubMedGoogle Scholar
  76. 76.
    M. Eilers, A. B. Patel, Comparison of helix interactions in membrane and soluble α-bundle proteins, Biophys. J. 82(5), 2720–2736 (2002).CrossRefPubMedGoogle Scholar
  77. 77.
    M. Olivella, X. Deupi, C. Govaerts, Influence of the environment in the conformation of α-helices studied by protein database search and molecular dynamics simulations, Biophys. J. 82(6), 3207–3213 (2002).CrossRefPubMedGoogle Scholar
  78. 78.
    A. Pusztai, S. Bardocz, S. W. Ewen, Uses of plant lectins in bioscience and biomedicine, Front. Biosci. 13, 1130–1140 (2008).CrossRefPubMedGoogle Scholar
  79. 79.
    H. Berman, K. Henrick, H. Nakamura, J. L. Markley, The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data, Nucleic Acids Res. 35, D301–D303 (2007).CrossRefPubMedGoogle Scholar
  80. 80.
    R. A. Sayle, E. J. Milner-White, RasMol: Biomolecular graphics for all, Trends Biochem. Sci. 20(9), 347–376 (1995).CrossRefGoogle Scholar
  81. 81.
    J. H. Naismith, C. Emmerich, J. Habash, S. J. Harrop, J. R. Helliwell, W. N. Hunter, J. Raftery, A. J. Kalb, J. Yariv, Refined structure of Concanavalin-A complexed with methyl alpha-d-mannopyranoside at 2.0 Angstrom resolution and comparison with the saccharide-free structure, Acta Crystallogr. D. Biol. Crystallogr. 50, 847 (1994).CrossRefPubMedGoogle Scholar
  82. 82.
    T. W. Hamelryck, M. H. Dao-Thi, F. Poortmans, M. J. Chrispeels, L. Wyns, R. Loris, The crystallographic structure of phytohemagglutinin, J. Biol. Chem. 271, 20479 (1996).CrossRefPubMedGoogle Scholar
  83. 83.
    C. S. Wright, Angstroms resolution structure analysis of two refined N-acetylneuraminyllactose – wheat germ agglutinin isolectin complexes, J. Mol. Biol. 215, 635 (1990).CrossRefPubMedGoogle Scholar
  84. 84.
    R. Ravishankar, K. Suguna, A. Surolia, M. Vijayan, Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex, J. Mol. Biol. 259, 281 (1996).CrossRefPubMedGoogle Scholar
  85. 85.
    T. Prasthofer, S. R. Phillips, F. L. Suddath, J. A. Engler, Design, expression, and crystallization of recombinant lectin from the garden pea (Pisum sativum), J. Biol. Chem. 264, 6793 (1989).PubMedGoogle Scholar
  86. 86.
    J. B. A. Ross, W. R. Laws, K. W. Roussland, H. R. Wyssbrod, Tyrosine fluorescence and phosphorescence from proteins and polypeptides, in Topics in fluorescence spectroscopy, Vol. 3, edited by J. R. Lakowicz (Plenum Press, New York, 1992) pp. 1–63.Google Scholar
  87. 87.
    V. M. Mazhul’, D. G. Shcherbin. Phosphorescence of lipid peroxidation products in solution and biological membranes, in Spectroscopy of biological molecules, edited by J. C. Merlin (Kluwer Academic Publishers, Dordrecht, 1995) pp. 401–402.Google Scholar
  88. 88.
    V. M. Mazhul’, D. G. Shcherbin, Room temperature phosphorescence of intrinsic lipid chromophores in erythrocyte membranes, Curr. Top. Biophys. 22(B), 138–142 (1998).Google Scholar
  89. 89.
    V. M. Mazhul’, D. G. Shcherbin, Phosphorescence analysis of lipid peroxidation products in liposomes, Biophysics 44(4), 656–661 (1999).Google Scholar
  90. 90.
    V. M. Mazhul’, D. G. Shcherbin. Phosphorescent analysis of lipid peroxidation products in vitro and in situ, in Spectroscopy of biological molecules: New directions, edited by J. Greve, G. J. Puppels, C. Otto, (Kluwer Academic Publishers, Dordrecht, 1999) pp. 349–350.Google Scholar
  91. 91.
    V. M. Mazhul’, D. G. Shcherbin, The heterogeneity of development of lipid peroxidation process in bulk and annular lipids of biological membranes, Curr. Top. Biophys. 24(2), 139–146 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vladimir M. Mazhul’
    • 1
  • Alexander V. Timoshenko
    • 1
  • Ekaterina M. Zaitseva
    • 1
  • Svetlana G. Loznikova
    • 1
  • Inessa V. Halets
    • 1
  • Tatsiana S. Chernovets
    • 1
  1. 1.Laboratory of Proteomics, Institute of Biophysics and Cellular EngineeringNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations