GABAergic Transmission and Neuronal Network Events During Hippocampal Development

  • Sampsa T. Sipilä
  • Kai K. Kaila


The immature hippocampus generates spontaneous network events which are known as giant depolarizing potentials (GDPs) in experiments carried out in vitro. GDPs are generally thought to be driven by the interneuronal network, because they can be recorded from hippocampal slices during the early neonatal period when GABAA receptor-mediated responses are depolarizing. Recent work indicates, however, that GDPs are paced by glutamatergic neurons, and that the functionally excitatory action of GABA during early development is facilitatory but not instructive. In experiments done in vivo, sharp positive waves (SPWs) can be detected in both neonate and adult rodents. Taken together, the available evidence suggests that GDPs are the in vitro counterparts of SPWs in the immature hippocampus.


GABAA Receptor Network Event GABAergic Transmission GABAA Receptor Antagonist Intrinsic Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors’ original research work has been supported by the Academy of Finland, the Jane and Aatos Erkko Foundation and the Sigrid Jusélius Foundation. The authors thank Drs. Roustem Khazipov, Liset Menendez de la Prida, Michael O’Donovan, Eva Ruusuvuori, and Else Tolner for constructive comments on an early draft of the manuscript.


  1. Agmon A, Wells JE (2003) The role of the hyperpolarization-activated cationic current I(h) in the timing of interictal bursts in the neonatal hippocampus. J Neurosci 23:3658–3668PubMedGoogle Scholar
  2. Avishai-Eliner S, Brunson KL, Sandman CA, Baram TZ (2002) Stressed-out, or in (utero)? Trends Neurosci 25:518–524PubMedGoogle Scholar
  3. Balakrishnan V, Becker M, Lohrke S, Nothwang HG, Guresir E, Friauf E (2003) Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci 23:4134–4145PubMedGoogle Scholar
  4. Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360PubMedGoogle Scholar
  5. Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739PubMedGoogle Scholar
  6. Ben-Ari Y (2006) Basic developmental rules and their implications for epilepsy in the immature brain. Epileptic Disord 8:91–102PubMedGoogle Scholar
  7. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol (Lond) 416:303–325Google Scholar
  8. Ben-Ari Y, Khalilov I, Represa A, Gozlan H (2004) Interneurons set the tune of developing networks. Trends Neurosci 27:422–427PubMedGoogle Scholar
  9. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284PubMedGoogle Scholar
  10. Bernard C, Milh M, Morozov YM, Ben-Ari Y, Freund TF, Gozlan H (2005) Altering cannabinoid signaling during development disrupts neuronal activity. Proc Natl Acad Sci USA 102:9388–9393PubMedGoogle Scholar
  11. Blaesse P, Guillemin I, Schindler J, Schweizer M, Delpire E, Khiroug L, Friauf E, Nothwang HG (2006) Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. J Neurosci 26:10407–10419PubMedGoogle Scholar
  12. Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61(6):820–838PubMedGoogle Scholar
  13. Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ, Faulhaber J, Ehmke H, Pfeffer C, Scheel O, Lemcke B, Horst J, Leuwer R, Pape HC, Volkl H, Hubner CA, Jentsch TJ (2003) Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J 22:5422–5434PubMedGoogle Scholar
  14. Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81:2095–2102PubMedGoogle Scholar
  15. Bolea S, Sanchez-Andres JV, Huang X, Wu JY (2006) Initiation and propagation of neuronal coactivation in the developing hippocampus. J Neurophysiol 95:552–561PubMedGoogle Scholar
  16. Buhl DL, Buzsaki G (2005) Developmental emergence of hippocampal fast-field “ripple” oscillations in the behaving rat pups. Neuroscience 134:1423–1430PubMedGoogle Scholar
  17. Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252PubMedGoogle Scholar
  18. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570PubMedGoogle Scholar
  19. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, USAGoogle Scholar
  20. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171PubMedGoogle Scholar
  21. Buzsaki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116:201–211PubMedGoogle Scholar
  22. Buzsaki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56:771–783PubMedGoogle Scholar
  23. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17PubMedGoogle Scholar
  24. Clower WT (1998) Early contributions to the reflex chain hypothesis. J Hist Neurosci 7:32–42PubMedGoogle Scholar
  25. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421PubMedGoogle Scholar
  26. Crepel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R (2007) A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron 54:105–120PubMedGoogle Scholar
  27. Danglot L, Triller A, Marty S (2006) The development of hippocampal interneurons in rodents. Hippocampus 16:1032–1060PubMedGoogle Scholar
  28. Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195PubMedGoogle Scholar
  29. Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L (2002) Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36:1051–1061PubMedGoogle Scholar
  30. Duebel J, Haverkamp S, Schleich W, Feng G, Augustine GJ, Kuner T, Euler T (2006) Two-photon imaging reveals somatodendritic chloride gradient in retinal ON-type bipolar cells expressing the biosensor Clomeleon. Neuron 49:81–94PubMedGoogle Scholar
  31. Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439:79–83PubMedGoogle Scholar
  32. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87PubMedGoogle Scholar
  33. Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653–656PubMedGoogle Scholar
  34. Flagella M, Clarke LL, Miller ML, Erway LC, Giannella RA, Andringa A, Gawenis LR, Kramer J, Duffy JJ, Doetschman T, Lorenz JN, Yamoah EN, Cardell EL, Shull GE (1999) Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946–26955PubMedGoogle Scholar
  35. Foffani G, Uzcategui YG, Gal B, Menendez de la Prida L (2007) Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 55:930–941PubMedGoogle Scholar
  36. Freemon FR, Walter RD (1970) Electrical activity of human limbic system during sleep. Compr Psychiatry 11:544–551PubMedGoogle Scholar
  37. Freemon FR, McNew JJ, Adey WR (1969) Sleep of unrestrained chimpanzee: cortical and subcortical recordings. Exp Neurol 25:129–137PubMedGoogle Scholar
  38. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  39. Fukuda A, Muramatsu K, Okabe A, Shimano Y, Hida H, Fujimoto I, Nishino H (1998) Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl- gradient in neonatal rat neocortex. J Neurophysiol 79:439–446PubMedGoogle Scholar
  40. Galli L, Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–91PubMedGoogle Scholar
  41. Gao XB, van den Pol AN (2000) GABA release from mouse axonal growth cones. J Physiol 523(Pt 3):629–637PubMedGoogle Scholar
  42. Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol (Lond) 507:219–236Google Scholar
  43. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–766PubMedGoogle Scholar
  44. Grillner S, Zangger P (1975) How detailed is the central pattern generation for locomotion? Brain Res 88:367–371PubMedGoogle Scholar
  45. Gulyas AI, Sik A, Payne JA, Kaila K, Freund TF (2001) The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci 13:2205–2217PubMedGoogle Scholar
  46. Hablitz JJ, Johnston D (1981) Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell Mol Neurobiol 1:325–334PubMedGoogle Scholar
  47. Hamburger V (1963) Some aspects of the embryology of behavior. Q Rev Biol 38:342–365PubMedGoogle Scholar
  48. Hennou S, Khalilov I, Diabira D, Ben-Ari Y, Gozlan H (2002) Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 16:197–208PubMedGoogle Scholar
  49. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888PubMedGoogle Scholar
  50. Hinde RA (1970) Animal behaviour. A synthesis of ethology and comparative psychology. McGraw-Hill, New YorkGoogle Scholar
  51. Hollrigel GS, Ross ST, Soltesz I (1998) Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus. J Neurophysiol 80:2340–2351PubMedGoogle Scholar
  52. Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524PubMedGoogle Scholar
  53. Huxley TH (1891) An introduction to the study of zoology, illustrated by the crayfish. D. Appleton and Co., New YorkGoogle Scholar
  54. Isenring P, Jacoby SC, Payne JA, Forbush B III (1998) Comparison of Na-K-Cl cotransporters. NKCC1, NKCC2, and the HEK cell Na-L-Cl cotransporter. J Biol Chem 273:11295–11301PubMedGoogle Scholar
  55. Jarolimek W, Lewen A, Misgeld U (1999) A furosemide-sensitive K+-Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. J Neurosci 19:4695–4704PubMedGoogle Scholar
  56. Jean-Xavier C, Mentis GZ, O’Donovan MJ, Cattaert D, Vinay L (2007) Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. Proc Natl Acad Sci U S A 104:11477–11482PubMedGoogle Scholar
  57. Ji F, Kanbara N, Obata K (1999) GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase. Neurosci Res 33:187–194PubMedGoogle Scholar
  58. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537PubMedGoogle Scholar
  59. Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165PubMedGoogle Scholar
  60. Kaila K, Voipio J, Paalasmaa P, Pasternack M, Deisz RA (1993) The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol (Lond) 464: 273–289Google Scholar
  61. Kaila K, Blaesse P, Sipilä ST (2008) Development of GABAergic signaling: from molecules to emerging networks. In: Blumberg MS, Freeman JH, Robinson SR (eds) Oxford handbook of developmental behavioral neuroscience. Oxford University Press, OxfordGoogle Scholar
  62. Kandel ER, Spencer WA (1961) Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol 24:243–259PubMedGoogle Scholar
  63. Kandel ER, Spencer WA, Brinley FJ Jr (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225–242PubMedGoogle Scholar
  64. Kanold PO, Shatz CJ (2006) Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron 51:627–638PubMedGoogle Scholar
  65. Karlsson KA, Blumberg MS (2003) Hippocampal theta in the newborn rat is revealed under conditions that promote REM sleep. J Neurosci 23:1114–1118PubMedGoogle Scholar
  66. Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3:34–42PubMedGoogle Scholar
  67. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138PubMedGoogle Scholar
  68. Khazipov R, Luhmann HJ (2006) Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 29:414–418PubMedGoogle Scholar
  69. Khazipov R, Leinekugel X, Khalilov I, Gaiarsa JL, Ben-Ari Y (1997) Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J Physiol (Lond) 498:763–772Google Scholar
  70. Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, Hirsch J, Dzhala V, Berger B, Ben-Ari Y (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21:9770–9781PubMedGoogle Scholar
  71. Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL (2004a) Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci 19:590–600PubMedGoogle Scholar
  72. Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsaki G (2004b) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432:758–761PubMedGoogle Scholar
  73. Khirug S, Huttu K, Ludwig A, Smirnov S, Voipio J, Rivera C, Kaila K, Khiroug L (2005) Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices. Eur J Neurosci 21:899–904PubMedGoogle Scholar
  74. Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28(18):4635–4639PubMedGoogle Scholar
  75. Kubota D, Colgin LL, Casale M, Brucher FA, Lynch G (2003) Endogenous waves in hippocampal slices. J Neurophysiol 89:81–89PubMedGoogle Scholar
  76. Kyrozis A, Reichling DB (1995) Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. J Neurosci Methods 57:27–35PubMedGoogle Scholar
  77. Lahtinen H, Palva JM, Sumanen S, Voipio J, Kaila K, Taira T (2002) Postnatal development of rat hippocampal gamma rhythm in vivo. J Neurophysiol 88:1469–1474PubMedGoogle Scholar
  78. Lamsa K, Palva JM, Ruusuvuori E, Kaila K, Taira T (2000) Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0–P2) rat hippocampus. J Neurophysiol 83:359–366PubMedGoogle Scholar
  79. Leblanc MO, Bland BH (1979) Developmental aspects of hippocampal electrical activity and motor behavior in the rat. Exp Neurol 66:220–237PubMedGoogle Scholar
  80. Lebovitz RM, Dichter M, Spencer WA (1971) Recurrent excitation in the CA3 region of cat hippocampus. Int J Neurosci 2:99–107PubMedGoogle Scholar
  81. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255PubMedGoogle Scholar
  82. Leinekugel X, Khalilov I, Ben-Ari Y, Khazipov R (1998) Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J Neurosci 18:6349–6357PubMedGoogle Scholar
  83. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052PubMedGoogle Scholar
  84. Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, Afzalov R, Coleman SK, Lauri S, Airaksinen MS, Keinanen K, Khiroug L, Saarma M, Kaila K, Rivera C (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56:1019–1033PubMedGoogle Scholar
  85. Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL (2000) Persistent activation of GABA(A) receptor/Cl(-) channels by astrocyte- derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 84:1392–1403PubMedGoogle Scholar
  86. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298PubMedGoogle Scholar
  87. Lu J, Karadsheh M, Delpire E (1999) Developmental regulation of the neuronal-specific isoform of K- Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 39:558–568PubMedGoogle Scholar
  88. MacVicar BA, Dudek FE (1980) Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184:220–223PubMedGoogle Scholar
  89. Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol (Lond) 550:873–887Google Scholar
  90. Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095PubMedGoogle Scholar
  91. Meister M, Wong RO, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943PubMedGoogle Scholar
  92. Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241PubMedGoogle Scholar
  93. Menendez de la Prida L, Bolea S, Sanchez-Andres JV (1998) Origin of the synchronized network activity in the rabbit developing hippocampus. Eur J Neurosci 10:899–906PubMedGoogle Scholar
  94. Miles R, Wong RK (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306:371–373PubMedGoogle Scholar
  95. Minlebaev M, Ben-Ari Y, Khazipov R (2007) Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol 97:692–700PubMedGoogle Scholar
  96. Mohajerani MH, Cherubini E (2006) Role of giant depolarizing potentials in shaping synaptic currents in the developing hippocampus. Critical Rev Neurobiol 18:13–23Google Scholar
  97. Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3 CA1 connections in the hippocampus. Proc Natl Acad Sci USA 104:13176–13181PubMedGoogle Scholar
  98. Mohns EJ, Karlsson KA, Blumberg MS (2007) Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility. Eur J Neurosci 26:2719–2730PubMedGoogle Scholar
  99. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  100. Owens DF, Liu X, Kriegstein AR (1999) Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. J Neurophysiol 82:570–583PubMedGoogle Scholar
  101. Pace AJ, Lee E, Athirakul K, Coffman TM, O’Brien DA, Koller BH (2000) Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2Cl(-) cotransporter. J Clin Invest 105:441–450PubMedGoogle Scholar
  102. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206PubMedGoogle Scholar
  103. Ranck JB Jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp Neurol 41:461–531PubMedGoogle Scholar
  104. Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes GL, Ben Ari Y, Zilberter Y (2008) Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol 100:609–619PubMedGoogle Scholar
  105. Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374PubMedGoogle Scholar
  106. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedGoogle Scholar
  107. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691PubMedGoogle Scholar
  108. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol (Lond) 562:27–36Google Scholar
  109. Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586:5437–5453PubMedGoogle Scholar
  110. Serafini R, Valeyev AY, Barker JL, Poulter MO (1995) Depolarizing GABA-activated Cl- channels in embryonic rat spinal and olfactory bulb cells. J Physiol (Lond) 488:371–386Google Scholar
  111. Sipilä S, Huttu K, Voipio J, Kaila K (2004) GABA uptake via GABA transporter-1 modulates GABAergic transmission in the immature hippocampus. J Neurosci 24:5877–5880PubMedGoogle Scholar
  112. Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289PubMedGoogle Scholar
  113. Sipilä ST, Huttu K, Voipio J, Kaila K (2006a) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na current and terminated by a slow Ca-activated K current. Eur J Neurosci 23:2330–2338PubMedGoogle Scholar
  114. Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K (2006b) The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol 573:765–773PubMedGoogle Scholar
  115. Sipilä ST, Voipio J, Kaila K (2007) GAT-1 acts to limit a tonic GABA(A) current in rat CA3 pyramidal neurons at birth. Eur J Neurosci 25:717–722PubMedGoogle Scholar
  116. Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, Barnes CA (2007) EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J Neurophysiol 98:898–910PubMedGoogle Scholar
  117. Soltesz I, Deschênes M (1993) Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J Neurophysiol 70:97–116PubMedGoogle Scholar
  118. Staba RJ, Wilson CL, Bragin A, Jhung D, Fried I, Engel J Jr (2004) High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 56:108–115PubMedGoogle Scholar
  119. Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346–1358PubMedGoogle Scholar
  120. Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235PubMedGoogle Scholar
  121. Thompson SM, Gahwiler BH (1989) Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. J Neurophysiol 61:512–523PubMedGoogle Scholar
  122. Traub RD, Miles R, Wong RK (1989) Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243:1319–1325PubMedGoogle Scholar
  123. Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H, Aniksztejn L (1999) The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19:10372–10382PubMedGoogle Scholar
  124. Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hubner CA, Represa A, Ben Ari Y, Khazipov R (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314:1788–1792PubMedGoogle Scholar
  125. Tyzio R, Holmes GL, Ben-Ari Y, Khazipov R (2007) Timing of the developmental switch in GABA(A) mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings. Epilepsia 48(Suppl 5):96–105PubMedGoogle Scholar
  126. Ulanovsky N, Moss CF (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat Neurosci 10:224–233PubMedGoogle Scholar
  127. Uvarov P, Ludwig A, Markkanen M, Pruunsild P, Kaila K, Delpire E, Timmusk T, Rivera C, Airaksinen MS (2007) A novel N-terminal isoform of the neuron-specific K-Cl cotransporter KCC2. J Biol Chem 282:30570–30576PubMedGoogle Scholar
  128. Valeyev AY, Cruciani RA, Lange GD, Smallwood VS, Barker JL (1993) Cl- channels are randomly activated by continuous GABA secretion in cultured embryonic rat hippocampal neurons. Neurosci Lett 155:199–203PubMedGoogle Scholar
  129. Vanhatalo S, Kaila K (2006) Development of neonatal EEG activity: from phenomenology to physiology. Semin Fetal Neonatal Med 11(6):471–478PubMedGoogle Scholar
  130. Vanhatalo S, Tallgren P, Andersson S, Sainio K, Voipio J, Kaila K (2002) DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants. Clin Neurophysiol 113:1822–1825PubMedGoogle Scholar
  131. Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20:7657–7663PubMedGoogle Scholar
  132. Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C, Reim K, Rosenmund C (2002) Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci USA 99:9037–9042PubMedGoogle Scholar
  133. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Sudhof TC (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869PubMedGoogle Scholar
  134. von Holst E (1935) Erregungsbildung and Erregungsleitung im Fischrückenmark. Pflugers Arch 235:345–359Google Scholar
  135. von Holst E (1954) Relations between the central nervous system and the peripheral organs. Br J Anim Behav 2:89–94Google Scholar
  136. Wang DD, Kriegstein AR (2009) Defining the Role of GABA in Cortical Development. J Physiol 587(Pt 9):1873–1879PubMedGoogle Scholar
  137. Wiersma CA, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, procambarus clarki (girard). Comp Biochem Physiol 12:509–525PubMedGoogle Scholar
  138. Williams JR, Payne JA (2004) Cation transport by the neuronal K(+)-Cl(-) cotransporter KCC2: thermodynamics and kinetics of alternate transport modes. Am J Physiol Cell Physiol 287:C919–C931PubMedGoogle Scholar
  139. Wojcik SM, Katsurabayashi S, Guillemin I, Friauf E, Rosenmund C, Brose N, Rhee JS (2006) A shared vesicular carrier allows synaptic corelease of GABA and glycine. Neuron 50:575–587PubMedGoogle Scholar
  140. Wong RK, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45:86–97PubMedGoogle Scholar
  141. Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, Deutch AY, Lovinger DM, Delpire E (2002) Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 12:258–268PubMedGoogle Scholar
  142. Wu C, Asl MN, Gillis J, Skinner FK, Zhang L (2005) An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 94:741–753PubMedGoogle Scholar
  143. Wu Y, Wang W, Diez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865PubMedGoogle Scholar
  144. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol (Lond) 557:829–841Google Scholar
  145. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344PubMedGoogle Scholar
  146. Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669PubMedGoogle Scholar
  147. Zhang LL, Delpire E, Vardi N (2007) NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98:266–277PubMedGoogle Scholar
  148. Zhou Q, Poo MM (2004) Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci 27:378–383PubMedGoogle Scholar
  149. Zhu L, Lovinger D, Delpire E (2005) Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol 93:1557–1568PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Clinical NeurophysiologyOulu University HospitalOuluFinland
  2. 2.Department of Biosciences and Neuroscience CenterUniversity of HelsinkiHelsinkiFinland

Personalised recommendations