Advertisement

Cancer Biology Relating to Minimal Access Management

  • Jonathan C. Salo
Chapter

Abstract

The introduction of laparoscopic colon resection for colon carcinoma in the 1990s was accompanied by a series of case reports of port site recurrences which appeared to occur with alarming frequency [1–8]. These reports tempered the initial enthusiasm for laparoscopic colectomy for colon cancer. They also prompted several lines of laboratory and clinical investigation, including animal experiments which attempted to replicate the cancer biology of laparoscopic cancer surgery, prospective accumulation of data regarding laparoscopic colon resection, and finally the organization and execution of several large-scale randomized clinical trials comparing laparoscopic and open resection for colorectal cancer.

Keywords

Laparoscopic Cholecystectomy Port Site Laparoscopic Colectomy Serum Vascular Endothelial Growth Factor Open Colectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cava A, Roman J, Gonzalez QA et al (1990) Subcutaneous metastasis following laparoscopy in gastric adenocarcinoma. Eur J Surg Oncol 16:63–67PubMedGoogle Scholar
  2. 2.
    Chapman AE, Levitt MD, Hewett P et al (2001) Laparoscopic-assisted resection of colorectal malignancies: a systematic review. Ann Surg 234:590–606PubMedCrossRefGoogle Scholar
  3. 3.
    Clair DG, Lautz DB, Brooks DC (1993) Rapid development of umbilical metastases after laparoscopic cholecystectomy for unsuspected gallbladder carcinoma. Surgery 113:355–358PubMedGoogle Scholar
  4. 4.
    Curet MJ (2004) Port site metastases. Am J Surg 187:705–712PubMedCrossRefGoogle Scholar
  5. 5.
    Drouard F, Delamarre J, Capron JP (1991) Cutaneous seeding of gallbladder cancer after laparoscopic cholecystectomy. N Engl J Med 325:1316PubMedGoogle Scholar
  6. 6.
    Fusco MA, Paluzzi MW (1993) Abdominal wall recurrence after laparoscopic-assisted colectomy for adenocarcinoma of the colon. Report of a case. Dis Colon Rectum 36:858–861PubMedCrossRefGoogle Scholar
  7. 7.
    Wexner SD, Cohen SM (1995) Port site metastases after laparoscopic colorectal surgery for cure of malignancy. Br J Surg 82:295–298PubMedCrossRefGoogle Scholar
  8. 8.
    Johnstone PA, Rohde DC, Swartz SE et al (1996) Port site recurrences after laparoscopic and thoracoscopic procedures in malignancy. J Clin Oncol 14:1950–1956PubMedGoogle Scholar
  9. 9.
    Vukasin P, Ortega AE, Greene FL et al (1996) Wound recurrence following laparoscopic colon cancer resection. Results of the American Society of Colon and Rectal Surgeons Laparoscopic Registry. Dis Colon Rectum 39:S20–S23PubMedCrossRefGoogle Scholar
  10. 10.
    Kuhry E, Schwenk WF, Gaupset R et al (2008) Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev 4:CD003432Google Scholar
  11. 11.
    Fisher B, Fisher EN (1959) Experimental evidence in support of the dormant tumor cell. Science 130:918–919PubMedCrossRefGoogle Scholar
  12. 12.
    Buinauskas P, McDOnald GO, Cole WH (1958) Role of operative stress on the resistance of the experimental animal to inoculated cancer cells. Ann Surg 148:642–645PubMedCrossRefGoogle Scholar
  13. 13.
    Hattori T, Hamai Y, Harada T et al (1977) Enhancing effect of thoracotomy and/or laparotomy on the development of the lung metastases in rats after intravenous inoculation of tumor cells. Jpn J Surg 7:263–268PubMedCrossRefGoogle Scholar
  14. 14.
    Bar-Yosef S, Melamed R, Page GG et al (2001) Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology 94:1066–1073PubMedCrossRefGoogle Scholar
  15. 15.
    Wada H, Seki S, Takahashi T et al (2007) Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/TH2 cytokine balance. Anesthesiology 106:499–506PubMedCrossRefGoogle Scholar
  16. 16.
    Southall JC, Lee SW, Bessler M et al (1998) The effect of peritoneal air exposure on postoperative tumor growth. Surg Endosc 12:348–350PubMedCrossRefGoogle Scholar
  17. 17.
    Southall JC, Lee SW, Allendorf JD et al (1998) Colon adenocarcinoma and B-16 melanoma grow larger following laparotomy vs. pneumoperitoneum in a murine model. Dis Colon Rectum 41:564–569PubMedCrossRefGoogle Scholar
  18. 18.
    Carter JJ, Feingold DL, Kirman I et al (2003) Laparoscopic-assisted cecectomy is associated with decreased formation of postoperative pulmonary metastases compared with open cecectomy in a murine model. Surgery 134:432–436PubMedCrossRefGoogle Scholar
  19. 19.
    Da Costa ML, Redmond P, Bouchier-Hayes DJ (1998) The effect of laparotomy and laparoscopy on the establishment of spontaneous tumor metastases. Surgery 124:516–525PubMedCrossRefGoogle Scholar
  20. 20.
    Pidgeon GP, Harmey JH, Kay E et al (1999) The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease. Br J Cancer 81:1311–1317PubMedCrossRefGoogle Scholar
  21. 21.
    Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127:117–126PubMedCrossRefGoogle Scholar
  22. 22.
    Cruickshank AM, Fraser WD, Burns HJ et al (1990) Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci (Lond) 79:161–165Google Scholar
  23. 23.
    Delgado S, Lacy AM, Filella X et al (2001) Acute phase response in laparoscopic and open colectomy in colon cancer: randomized study. Dis Colon Rectum 44:638–646PubMedCrossRefGoogle Scholar
  24. 24.
    Leung KL, Lai PB, Ho RL et al (2000) Systemic cytokine response after laparoscopic-assisted resection of rectosigmoid carcinoma: a prospective randomized trial. Ann Surg 231:506–511PubMedCrossRefGoogle Scholar
  25. 25.
    Schwenk W, Jacobi C, Mansmann U et al (2000) Inflammatory response after laparoscopic and conventional colorectal resections - results of a prospective randomized trial. Langenbecks Arch Surg 385:2–9PubMedCrossRefGoogle Scholar
  26. 26.
    Braga M, Vignali A, Zuliani W et al (2002) Metabolic and functional results after laparoscopic colorectal surgery: a randomized, controlled trial. Dis Colon Rectum 45:1070–1077PubMedCrossRefGoogle Scholar
  27. 27.
    Ordemann J, Jacobi CA, Schwenk W et al (2001) Cellular and humoral inflammatory response after laparoscopic and conventional colorectal resections. Surg Endosc 15:600–608PubMedCrossRefGoogle Scholar
  28. 28.
    Harmon GD, Senagore AJ, Kilbride MJ et al (1994) Interleukin-6 response to laparoscopic and open colectomy. Dis Colon Rectum 37:754–759PubMedCrossRefGoogle Scholar
  29. 29.
    Hewitt PM, Ip SM, Kwok SP et al. (1998) Laparoscopic-assisted vs. open surgery for colorectal cancer: comparative study of immune effects. Dis Colon Rectum 41:901–909PubMedCrossRefGoogle Scholar
  30. 30.
    Mehigan BJ, Hartley JE, Drew PJ et al (2001) Changes in T cell subsets, interleukin-6 and C-reactive protein after laparoscopic and open colorectal resection for malignancy. Surg Endosc 15:1289–1293PubMedCrossRefGoogle Scholar
  31. 31.
    Dunker MS, Ten Hove T, Bemelman WA et al. (2003) Interleukin-6, C-reactive protein, and expression of human leukocyte antigen-DR on peripheral blood mononuclear cells in patients after laparoscopic vs. conventional bowel resection: a randomized study. Dis Colon Rectum 46:1238–1244PubMedCrossRefGoogle Scholar
  32. 32.
    Jung IK, Kim MC, Kim KH et al (2008) Cellular and peritoneal immune response after radical laparoscopy-assisted and open gastrectomy for gastric cancer. J Surg Oncol 98:54–59PubMedCrossRefGoogle Scholar
  33. 33.
    Alami N, Page V, Yu Q et al (2008) Recombinant human insulin-like growth factor-binding protein 3 inhibits tumor growth and targets the Akt pathway in lung and colon cancer models. Growth Horm IGF Res 18(6):487–496PubMedCrossRefGoogle Scholar
  34. 34.
    Kirman I, Cekic V, Poltoratskaia N et al (2005) Open surgery induces a dramatic decrease in circulating intact IGFBP-3 in patients with colorectal cancer not seen with laparoscopic surgery. Surg Endosc 19:55–59PubMedCrossRefGoogle Scholar
  35. 35.
    Belizon A, Kirman I, Balik E et al (2007) Major surgical trauma induces proteolysis of insulin-like growth factor binding protein-3 in transgenic mice and is associated with a rapid increase in circulating levels of matrix metalloproteinase-9. Surg Endosc 21:653–658PubMedCrossRefGoogle Scholar
  36. 36.
    Futami R, Miyashita M, Nomura T et al (2007) Increased serum vascular endothelial growth factor following major surgical injury. J Nippon Med Sch 74:223–229PubMedCrossRefGoogle Scholar
  37. 37.
    Belizon A, Balik E, Horst P et al (2008) Persistent elevation of plasma vascular endothelial growth factor levels during the first month after minimally invasive colorectal resection. Surg Endosc 22:287–297PubMedCrossRefGoogle Scholar
  38. 38.
    Belizon A, Balik E, Feingold DL et al (2006) Major abdominal surgery increases plasma levels of vascular endothelial growth factor: open more so than minimally invasive methods. Ann Surg 244:792–798PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenzweig A (2003) Endothelial progenitor cells. N Engl J Med 348:581–582PubMedCrossRefGoogle Scholar
  40. 40.
    Mancuso P, Burlini A, Pruneri G et al (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661PubMedCrossRefGoogle Scholar
  41. 41.
    Condon ET, Wang JH, Redmond HP (2004) Surgical injury induces the mobilization of endothelial progenitor cells. Surgery 135:657–661PubMedCrossRefGoogle Scholar
  42. 42.
    Condon ET, Barry BD, Wang JH et al (2007) Laparoscopic surgery protects against the oncologic adverse effects of open surgery by attenuating endothelial progenitor cell mobilization. Surg Endosc 21:87–90PubMedCrossRefGoogle Scholar
  43. 43.
    Lee SW, Gleason NR, Southall JC et al (2000) A serum-soluble factor(s) stimulates tumor growth following laparotomy in a murine model. Surg Endosc 14:490–494PubMedCrossRefGoogle Scholar
  44. 44.
    Lee SW, Gleason NR, Stapleton GS et al (2001) Increased platelet-derived growth factor (PDGF) release after laparotomy stimulates systemic tumor growth in mice. Surg Endosc 15:981–985PubMedCrossRefGoogle Scholar
  45. 45.
    Homsi J, Daud AI (2007) Spectrum of activity and mechanism of action of VEGF/PDGF inhibitors. Cancer Control 14:285–294PubMedGoogle Scholar
  46. 46.
    Pietsch JB, Meakins JL, MacLean LD (1977) The delayed hypersensitivity response: application in clinical surgery. Surgery 82:349–355PubMedGoogle Scholar
  47. 47.
    Daly JM, Dudrick SJ, Copeland EM III. (1979) Evaluation of nutritional indices as prognostic indicators in the cancer patient. Cancer 43:925–931PubMedCrossRefGoogle Scholar
  48. 48.
    Eilber FR, Morton DL (1970) Impaired immunologic reactivity and recurrence following cancer surgery. Cancer 25:362–367PubMedCrossRefGoogle Scholar
  49. 49.
    Trokel MJ, Bessler M, Treat MR et al (1994) Preservation of immune response after laparoscopy. Surg Endosc 8:1385–1387PubMedCrossRefGoogle Scholar
  50. 50.
    Ueda K, Matteotti R, Assalia A et al (2006) Comparative evaluation of gastrointestinal transit and immune response between laparoscopic and open gastrectomy in a porcine model. J Gastrointest Surg 10:39–45PubMedCrossRefGoogle Scholar
  51. 51.
    Gleason NR, Blanco I, Allendorf JD et al (1999) Delayed-type hypersensitivity response is better preserved in mice following insufflation than after laparotomy. Surg Endosc 13:1032–1034PubMedCrossRefGoogle Scholar
  52. 52.
    Allendorf JD, Bessler M, Whelan RL et al (1997) Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc 11:427–430PubMedCrossRefGoogle Scholar
  53. 53.
    Whelan RL, Franklin M, Holubar SD et al (2003) Postoperative cell mediated immune response is better preserved after laparoscopic vs. open colorectal resection in humans. Surg Endosc 17:972–978PubMedCrossRefGoogle Scholar
  54. 54.
    Wichmann MW, Huttl TP, Winter H et al (2005) Immunological effects of laparoscopic vs. open colorectal surgery: a prospective clinical study. Arch Surg 140:692–697PubMedCrossRefGoogle Scholar
  55. 55.
    Bolla G, Tuzzato G (2003) Immunologic postoperative competence after laparoscopy versus laparotomy. Surg Endosc 17:1247–1250PubMedCrossRefGoogle Scholar
  56. 56.
    Redmond HP, Watson RW, Houghton T et al (1994) Immune function in patients undergoing open vs. laparoscopic cholecystectomy. Arch Surg 129:1240–1246PubMedCrossRefGoogle Scholar
  57. 57.
    Carey PD, Wakefield CH, Thayeb A et al (1994) Effects of minimally invasive surgery on hypochlorous acid production by neutrophils. Br J Surg 81:557–560PubMedCrossRefGoogle Scholar
  58. 58.
    Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  59. 59.
    Brune IB, Wilke W, Hensler T et al (1999) Downregulation of T helper type 1 immune response and altered pro-inflammatory and anti-inflammatory T cell cytokine balance following conventional but not laparoscopic surgery. Am J Surg 177:55–60PubMedCrossRefGoogle Scholar
  60. 60.
    Decker D, Schondorf M, Bidlingmaier F et al (1996) Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to the trauma. Surgery 119:316–325PubMedCrossRefGoogle Scholar
  61. 61.
    Di Vita G, Sciume C, Milano S et al (2001) Inflammatory response in open and laparoscopic cholecystectomy. Ann Ital Chir 72:669–673PubMedGoogle Scholar
  62. 62.
    Fujii K, Sonoda K, Izumi K et al (2003) T lymphocyte subsets and Th1/Th2 balance after laparoscopy-assisted distal gastrectomy. Surg Endosc 17:1440–1444PubMedCrossRefGoogle Scholar
  63. 63.
    Evans C, Galustian C, Kumar D et al (2008) Impact of surgery on immunologic function: comparison between minimally invasive techniques and conventional laparotomy for surgical resection of colorectal tumors. Am J Surg 197(2):238–245PubMedCrossRefGoogle Scholar
  64. 64.
    Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376PubMedCrossRefGoogle Scholar
  65. 65.
    Tartter PI, Steinberg B, Barron DM et al (1987) The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg 122:1264–1268PubMedCrossRefGoogle Scholar
  66. 66.
    Kondo E, Koda K, Takiguchi N et al (2003) Preoperative natural killer cell activity as a prognostic factor for distant metastasis following surgery for colon cancer. Dig Surg 20:445–451PubMedCrossRefGoogle Scholar
  67. 67.
    Coca S, Perez-Piqueras J, Martinez D et al (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79:2320–2328PubMedCrossRefGoogle Scholar
  68. 68.
    Menon AG, Janssen-van Rhijn CM, Morreau H et al (2004) Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest 84:493–501PubMedCrossRefGoogle Scholar
  69. 69.
    Ishigami S, Natsugoe S, Tokuda K et al (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583PubMedCrossRefGoogle Scholar
  70. 70.
    Ishigami S, Natsugoe S, Tokuda K et al (2000) Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer. Cancer Lett 159:103–108PubMedCrossRefGoogle Scholar
  71. 71.
    Da Costa ML, Redmond HP, Finnegan N et al (1998) Laparotomy and laparoscopy differentially accelerate experimental flank tumour growth. Br J Surg 85:1439–1442PubMedCrossRefGoogle Scholar
  72. 72.
    Da Costa ML, Redmond HP, Bouchier-Hayes DJ (2001) Taurolidine improves survival by abrogating the accelerated development and proliferation of solid tumors and development of organ metastases from circulating tumor cells released following surgery. J Surg Res 101:111–119PubMedCrossRefGoogle Scholar
  73. 73.
    Mathew G, Watson DI, Ellis TS et al (1999) The role of peritoneal immunity and the tumour-bearing state on the development of wound and peritoneal metastases after laparoscopy. Aust N Z J Surg 69:14–18PubMedCrossRefGoogle Scholar
  74. 74.
    Wenger FA, Jacobi CA, Kilian M et al (2000) The impact of laparoscopic biopsy of pancreatic lymph nodes with helium and carbon dioxide on port site and liver metastasis in BOP-induced pancreatic cancer in hamster. Clin Exp Metastasis 18:11–14PubMedCrossRefGoogle Scholar
  75. 75.
    Jones DB, Guo LW, Reinhard MK et al (1995) Impact of pneumoperitoneum on trocar site implantation of colon cancer in hamster model. Dis Colon Rectum 38:1182–1188PubMedCrossRefGoogle Scholar
  76. 76.
    Allendorf JD, Bessler M, Kayton ML et al (1995) Increased tumor establishment and growth after laparotomy vs. laparoscopy in a murine model. Arch Surg 130:649–653PubMedCrossRefGoogle Scholar
  77. 77.
    Allendorf JD, Bessler M, Horvath KD et al (1999) Increased tumor establishment and growth after open vs. laparoscopic surgery in mice may be related to differences in postoperative T-cell function. Surg Endosc 13:233–235PubMedCrossRefGoogle Scholar
  78. 78.
    Bouvy ND, Marquet RL, Jeekel H et al (1996) Impact of gas(less) laparoscopy and laparotomy on peritoneal tumor growth and abdominal wall metastases. Ann Surg 224:694–700PubMedCrossRefGoogle Scholar
  79. 79.
    Bouvy ND, Marquet RL, Jeekel J et al (1997) Laparoscopic surgery is associated with less tumour growth stimulation than conventional surgery: an experimental study. Br J Surg 84:358–361PubMedCrossRefGoogle Scholar
  80. 80.
    Jacobi CA, Ordemann J, Bohm B et al (1997) The influence of laparotomy and laparoscopy on tumor growth in a rat model. Surg Endosc 11:618–621PubMedCrossRefGoogle Scholar
  81. 81.
    Lee SW, Gleason N, Blanco I et al (2002) Higher colon cancer tumor proliferative index and lower tumor cell death rate in mice undergoing laparotomy versus insufflation. Surg Endosc 16:36–39PubMedCrossRefGoogle Scholar
  82. 82.
    Mutter D, Hajri A, Tassetti V et al (1999) Increased tumor growth and spread after laparoscopy vs. laparotomy: influence of tumor manipulation in a rat model. Surg Endosc 13:365–370PubMedCrossRefGoogle Scholar
  83. 83.
    Takeuchi H, Inomata M, Fujii K et al (2004) Increased peritoneal dissemination after laparotomy versus pneumoperitoneum in a mouse cecal cancer model. Surg Endosc 18:1795–1799PubMedCrossRefGoogle Scholar
  84. 84.
    Kuntz C, Kienle P, Schmeding M et al (2002) Comparison of laparoscopic versus conventional technique in colonic and liver resection in a tumor-bearing small animal model. Surg Endosc 16:1175–1181PubMedCrossRefGoogle Scholar
  85. 85.
    Moreno EF, Nelson H, Carugno F et al (2000) Effects of laparoscopy on tumor growth. Surg Laparosc Endosc Percutan Tech 10:296–301PubMedGoogle Scholar
  86. 86.
    Fong Y, Brennan MF, Turnbull A et al (1993) Gallbladder cancer discovered during laparoscopic surgery. Potential for iatrogenic tumor dissemination. Arch Surg 128:1054–1056PubMedCrossRefGoogle Scholar
  87. 87.
    Wibbenmeyer LA, Wade TP, Chen RC et al (1995) Laparoscopic cholecystectomy can disseminate in situ carcinoma of the gallbladder. J Am Coll Surg 181:504–510PubMedGoogle Scholar
  88. 88.
    Sandor J, Ihasz M, Fazekas T et al (1995) Unexpected gallbladder cancer and laparoscopic surgery. Surg Endosc 9:1207–1210PubMedCrossRefGoogle Scholar
  89. 89.
    Shirai Y, Ohtani T, Hatakeyama K (1997) Tumor dissemination during laparoscopic cholecystectomy for gallbladder carcinoma. Surg Endosc 11:1224–1225PubMedCrossRefGoogle Scholar
  90. 90.
    Doudle M, King G, Thomas WM et al (1996) The movement of mucosal cells of the gallbladder within the peritoneal cavity during laparoscopic cholecystectomy. Surg Endosc 10:1092–1094PubMedCrossRefGoogle Scholar
  91. 91.
    Lee SW, Southall J, Allendorf J et al (1998) Traumatic handling of the tumor independent of pneumoperitoneum increases port site implantation rate of colon cancer in a murine model. Surg Endosc 12:828–834PubMedCrossRefGoogle Scholar
  92. 92.
    Lee SW, Gleason NR, Bessler M et al (2000) Port site tumor recurrence rates in a murine model of laparoscopic splenectomy decreased with increased experience. Surg Endosc 14:805–811PubMedCrossRefGoogle Scholar
  93. 93.
    Lee SW, Whelan RL, Southall JC et al (1998) Abdominal wound tumor recurrence after open and laparoscopic-assisted splenectomy in a murine model. Dis Colon Rectum 41:824–831PubMedCrossRefGoogle Scholar
  94. 94.
    Polat AK, Yapici O, Malazgirt Z et al (2007) Effect of types of resection and manipulation on trocar site contamination after laparoscopic colectomy: an experimental study in rats with intraluminal radiotracer application. Surg Endosc 22(5):1396–1401CrossRefGoogle Scholar
  95. 95.
    Halpin VJ, Underwood RA, Ye D et al (2005) Pneumo-peritoneum does not influence trocar site implantation during tumor manipulation in a solid tumor model. Surg Endosc 19:1636–1640PubMedCrossRefGoogle Scholar
  96. 96.
    Allardyce RA, Morreau P, Bagshaw PF (1997) Operative factors affecting tumor cell distribution following laparoscopic colectomy in a porcine model. Dis Colon Rectum 40:939–945PubMedCrossRefGoogle Scholar
  97. 97.
    Allardyce R, Morreau P, Bagshaw P (1996) Tumor cell distribution following laparoscopic colectomy in a porcine model. Dis Colon Rectum 39:S47–S52PubMedCrossRefGoogle Scholar
  98. 98.
    Hewett PJ, Texler ML, Anderson D et al (1999) In vivo real-time analysis of intraperitoneal radiolabeled tumor cell movement during laparoscopy. Dis Colon Rectum 42:868–875PubMedCrossRefGoogle Scholar
  99. 99.
    Reymond MA, Wittekind C, Jung A et al (1997) The incidence of port-site metastases might be reduced. Surg Endosc 11:902–906PubMedCrossRefGoogle Scholar
  100. 100.
    Neuhaus S, Hewett P, Disney A (2001) An unusual case of port site seeding. Surg Endosc 15:896PubMedCrossRefGoogle Scholar
  101. 101.
    Siriwardena A, Samarji WN (1993) Cutaneous tumour seeding from a previously undiagnosed pancreatic carcinoma after laparoscopic cholecystectomy. Ann R Coll Surg Engl 75:199–200PubMedGoogle Scholar
  102. 102.
    Ugarte F (1995) Laparoscopic cholecystectomy port seeding from a colon carcinoma. Am Surg 61:820–821PubMedGoogle Scholar
  103. 103.
    Jorgensen JO, McCall JL, Morris DL (1995) Port site seeding after laparoscopic ultrasonographic staging of pancreatic carcinoma. Surgery 117:118–119PubMedCrossRefGoogle Scholar
  104. 104.
    Shoup M, Brennan MF, Karpeh MS et al (2002) Port site metastasis after diagnostic laparoscopy for upper gastrointestinal tract malignancies: an uncommon entity. Ann Surg Oncol 9:632–636PubMedCrossRefGoogle Scholar
  105. 105.
    Sellers GJ, Whelan RL, Allendorf JD et al (1998) An in vitro model fails to demonstrate aerosolization of tumor cells. Surg Endosc 12:436–439PubMedCrossRefGoogle Scholar
  106. 106.
    Thomas WM, Eaton MC, Hewett PJ (1996) A proposed model for the movement of cells within the abdominal cavity during CO2 insufflation and laparoscopy. Aust N Z J Surg 66:105–106PubMedCrossRefGoogle Scholar
  107. 107.
    Texler ML, King G, Hewett PJ (1998) Tumour cell movement during heating and humidification of insufflating CO2: an in vitro model. Aust N Z J Surg 68:740–742PubMedCrossRefGoogle Scholar
  108. 108.
    Whelan RL, Sellers GJ, Allendorf JD et al (1996) Trocar site recurrence is unlikely to result from aerosolization of tumor cells. Dis Colon Rectum 39:S7–S13PubMedCrossRefGoogle Scholar
  109. 109.
    Wittich P, Marquet RL, Kazemier G et al (2000) Port-site metastases after CO(2) laparoscopy. Is aerosolization of tumor cells a pivotal factor? Surg Endosc 14:189–192PubMedCrossRefGoogle Scholar
  110. 110.
    Tseng LN, Berends FJ, Wittich P et al (1998) Port-site metastases. Impact of local tissue trauma and gas leakage. Surg Endosc 12:1377–1380PubMedCrossRefGoogle Scholar
  111. 111.
    Burns JM, Matthews BD, Pollinger HS et al (2005) Effect of carbon dioxide pneumoperitoneum and wound closure technique on port site tumor implantation in a rat model. Surg Endosc 19:441–447PubMedCrossRefGoogle Scholar
  112. 112.
    Schneider C, Jung A, Reymond MA et al (2001) Efficacy of surgical measures in preventing port-site recurrences in a porcine model. Surg Endosc 15:121–125PubMedCrossRefGoogle Scholar
  113. 113.
    Volz J, Koster S, Spacek Z et al (1999) The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth. Cancer 86:770–774PubMedCrossRefGoogle Scholar
  114. 114.
    Hopkins MP, Dulai RM, Occhino A et al (1999) The effects of carbon dioxide pneumoperitoneum on seeding of tumor in port sites in a rat model. Am J Obstet Gynecol 181:1329–1333PubMedCrossRefGoogle Scholar
  115. 115.
    Wu JS, Brasfield EB, Guo LW et al (1997) Implantation of colon cancer at trocar sites is increased by low pressure pneumoperitoneum. Surgery 122:1–7PubMedCrossRefGoogle Scholar
  116. 116.
    Lecuru F, Agostini A, Camatte S et al (2002) Impact of pneumoperitoneum on tumor growth. Surg Endosc 16:1170–1174PubMedCrossRefGoogle Scholar
  117. 117.
    Mathew G, Watson DI, Rofe AM et al (1997) Adverse impact of pneumoperitoneum on intraperitoneal implantation and growth of tumour cell suspension in an experimental model. Aust N Z J Surg 67:289–292PubMedCrossRefGoogle Scholar
  118. 118.
    Watson DI, Mathew G, Ellis T et al (1997) Gasless laparoscopy may reduce the risk of port-site metastases following laparascopic tumor surgery. Arch Surg 132:166–168PubMedCrossRefGoogle Scholar
  119. 119.
    Bouvy ND, Giuffrida MC, Tseng LN et al (1998) Effects of carbon dioxide pneumoperitoneum, air pneumoperitoneum, and gasless laparoscopy on body weight and tumor growth. Arch Surg 133:652–656PubMedCrossRefGoogle Scholar
  120. 120.
    Ishida H, Murata N, Yamada H et al (2000) Influence of trocar placement and CO(2) pneumoperitoneum on port site metastasis following laparoscopic tumor surgery. Surg Endosc 14:193–197PubMedCrossRefGoogle Scholar
  121. 121.
    Hubens G, Pauwels M, Hubens A et al (1996) The influence of a pneumoperitoneum on the peritoneal implantation of free intraperitoneal colon cancer cells. Surg Endosc 10:809–812PubMedCrossRefGoogle Scholar
  122. 122.
    Neuhaus SJ, Watson DI, Ellis T et al (1998) Wound metastasis after laparoscopy with different insufflation gases. Surgery 123:579–583PubMedCrossRefGoogle Scholar
  123. 123.
    Neuhaus SJ, Ellis T, Rofe AM et al (1998) Tumor implantation following laparoscopy using different insufflation gases. Surg Endosc 12:1300–1302PubMedCrossRefGoogle Scholar
  124. 124.
    Schmeding M, Schwalbach P, Reinshagen S et al (2003) Helium pneumoperitoneum reduces tumor recurrence after curative laparoscopic liver resection in rats in a tumor-bearing small animal model. Surg Endosc 17:951–959PubMedCrossRefGoogle Scholar
  125. 125.
    Jacobi CA, Sabat R, Bohm B et al (1997) Pneumo-peritoneum with carbon dioxide stimulates growth of malignant colonic cells. Surgery 121:72–78PubMedCrossRefGoogle Scholar
  126. 126.
    Jacobi CA, Wenger F, Sabat R et al (1998) The impact of laparoscopy with carbon dioxide versus helium on immunologic function and tumor growth in a rat model. Dig Surg 15:110–116PubMedCrossRefGoogle Scholar
  127. 127.
    Yokoyama M, Ishida H, Okita T et al (2003) Oncological effects of insufflation with different gases and a gasless procedure in rats. Surg Endosc 17:1151–1155PubMedCrossRefGoogle Scholar
  128. 128.
    Ridgway PF, Smith A, Ziprin P et al (2002) Pneumo-peritoneum augmented tumor invasiveness is abolished by matrix metalloproteinase blockade. Surg Endosc 16:533–536PubMedCrossRefGoogle Scholar
  129. 129.
    Dorrance HR, Oien K, O’Dwyer PJ (1999) Effects of laparoscopy on intraperitoneal tumor growth and distant metastases in an animal model. Surgery 126:35–40PubMedCrossRefGoogle Scholar
  130. 130.
    Gupta A, Watson DI, Ellis T et al (2002) Tumour implantation following laparoscopy using different insufflation gases. ANZ J Surg 72:254–257PubMedCrossRefGoogle Scholar
  131. 131.
    Neuhaus SJ, Ellis TS, Barrett MW et al (1999) In vitro inhibition of tumour growth in a helium-rich environment: implications for laparoscopic surgery. Aust N Z J Surg 69:52–55PubMedCrossRefGoogle Scholar
  132. 132.
    Birbeck MS, Wheatley DN (1965) An Electron Microscopic Study of the Invasion of Ascites Tumor Cells into the Abdominal Wall. Cancer Res 25:490–497PubMedGoogle Scholar
  133. 133.
    Buck RC (1973) Walker 256 tumor implantation in normal and injured peritoneum studied by electron microscopy, scanning electron microscopy, and autoradiography. Cancer Res 33:3181–3188PubMedGoogle Scholar
  134. 134.
    Kiyasu Y, Kaneshima S, Koga S (1981) Morphogenesis of peritoneal metastasis in human gastric cancer. Cancer Res 41:1236–1239PubMedGoogle Scholar
  135. 135.
    Volz J, Koster S, Spacek Z et al (1999) Characteristic alterations of the peritoneum after carbon dioxide pneumoperitoneum. Surg Endosc 13:611–614PubMedCrossRefGoogle Scholar
  136. 136.
    Suematsu T, Hirabayashi Y, Shiraishi N et al (2001) Morphology of the murine peritoneum after pneumoperitoneum vs. laparotomy. Surg Endosc 15:954–958PubMedCrossRefGoogle Scholar
  137. 137.
    Ordemann J, Jakob J, Braumann C et al (2004) Morphology of the rat peritoneum after carbon dioxide and helium pneumoperitoneum: a scanning electron microscopic study. Surg Endosc 18:1389–1393PubMedCrossRefGoogle Scholar
  138. 138.
    Mouton WG, Bessell JR, Pfitzner J et al (1999) A randomized controlled trial to determine the effects of humidified carbon dioxide insufflation during thoracoscopy. Surg Endosc 13:382–385PubMedCrossRefGoogle Scholar
  139. 139.
    Erikoglu M, Yol S, Avunduk MC et al (2005) Electron-microscopic alterations of the peritoneum after both cold and heated carbon dioxide pneumoperitoneum. J Surg Res 125:73–77PubMedCrossRefGoogle Scholar
  140. 140.
    Volz J, Koster S, Schaeff B et al (1998) Laparoscopic surgery: the effects of insufflation gas on tumor-induced lethality in nude mice. Am J Obstet Gynecol 178:793–795PubMedCrossRefGoogle Scholar
  141. 141.
    Nduka CC, Puttick M, Coates P et al (2002) Intraperitoneal hypothermia during surgery enhances postoperative tumor growth. Surg Endosc 16:611–615PubMedCrossRefGoogle Scholar
  142. 142.
    Peng Y, Zheng M, Ye Q et al (2008) Heated and humidified CO(2) prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations. J Surg Res 151(1):40–47PubMedCrossRefGoogle Scholar
  143. 143.
    Hazebroek EJ, Schreve MA, Visser P et al (2002) Impact of temperature and humidity of carbon dioxide pneumoperitoneum on body temperature and peritoneal morphology. J Laparoendosc Adv Surg Tech A 12:355–364PubMedCrossRefGoogle Scholar
  144. 144.
    Wittich P, Mearadji A, Marquet RL et al (2004) Increased tumor growth after high pressure pneumoperitoneum with helium and air. J Laparoendosc Adv Surg Tech A 14:205–208PubMedGoogle Scholar
  145. 145.
    Agostini A, Robin F, Jais JP et al (2002) Impact of different gases and pneumoperitoneum pressures on tumor growth during laparoscopy in a rat model. Surg Endosc 16:529–532PubMedCrossRefGoogle Scholar
  146. 146.
    Jacobi CA, Wenger FA, Ordemann J et al (1998) Experimental study of the effect of intra-abdominal pressure during laparoscopy on tumour growth and port site metastasis. Br J Surg 85:1419–1422PubMedCrossRefGoogle Scholar
  147. 147.
    Jackson PG, Evans SR (2000) Intraperitoneal macrophages and tumor immunity: a review. J Surg Oncol 75:146–154PubMedCrossRefGoogle Scholar
  148. 148.
    Neuhaus SJ, Watson DI, Ellis T et al (2000) Influence of gases on intraperitoneal immunity during laparoscopy in tumor-bearing rats. World J Surg 24:1227–1231PubMedCrossRefGoogle Scholar
  149. 149.
    Gutt CN, Heinz P, Kaps W et al (1997) The phagocytosis activity during conventional and laparoscopic operations in the rat. A preliminary study. Surg Endosc 11:899–901PubMedCrossRefGoogle Scholar
  150. 150.
    Chekan EG, Nataraj C, Clary EM et al (1999) Intraperitoneal immunity and pneumoperitoneum. Surg Endosc 13:1135–1138PubMedCrossRefGoogle Scholar
  151. 151.
    Hanly EJ, Aurora AR, Fuentes JM et al (2005) Abdominal insufflation with CO2 causes peritoneal acidosis independent of systemic pH. J Gastrointest Surg 9:1245–1251PubMedCrossRefGoogle Scholar
  152. 152.
    Kuebler JF, Vieten G, Shimotakahara A et al (2006) Acidification during carbon dioxide pneumoperitoneum is restricted to the gas-exposed peritoneal surface: effects of pressure, gas flow, and additional intraperitoneal fluids. J Laparoendosc Adv Surg Tech A 16:654–658PubMedCrossRefGoogle Scholar
  153. 153.
    Kuntz C, Wunsch A, Bodeker C et al (2000) Effect of pressure and gas type on intraabdominal, subcutaneous, and blood pH in laparoscopy. Surg Endosc 14:367–371PubMedCrossRefGoogle Scholar
  154. 154.
    Wong YT, Shah PC, Birkett DH et al (2004) Carbon dioxide pneumoperitoneum causes severe peritoneal acidosis, unaltered by heating, humidification, or bicarbonate in a porcine model. Surg Endosc 18:1498–1503PubMedCrossRefGoogle Scholar
  155. 155.
    Wildbrett P, Oh A, Naundorf D et al (2003) Impact of laparoscopic gases on peritoneal microenvironment and essential parameters of cell function. Surg Endosc 17:78–82PubMedCrossRefGoogle Scholar
  156. 156.
    Kos M, Kuebler JF, Jesch NK et al (2006) Carbon dioxide differentially affects the cytokine release of macrophage subpopulations exclusively via alteration of extracellular pH. Surg Endosc 20:570–576PubMedCrossRefGoogle Scholar
  157. 157.
    Hanly EJ, Aurora AA, Shih SP et al (2007) Peritoneal acidosis mediates immunoprotection in laparoscopic surgery. Surgery 142:357–364PubMedCrossRefGoogle Scholar
  158. 158.
    Iwanaka T, Arkovitz MS, Arya G et al (1997) Evaluation of operative stress and peritoneal macrophage function in minimally invasive operations. J Am Coll Surg 184:357–363PubMedGoogle Scholar
  159. 159.
    Moehrlen U, Ziegler U, Boneberg E et al (2006) Impact of carbon dioxide versus air pneumoperitoneum on peritoneal cell migration and cell fate. Surg Endosc 20:1607–1613PubMedCrossRefGoogle Scholar
  160. 160.
    Rylander R, Bake B, Fischer JJ et al (1989) Pulmonary function and symptoms after inhalation of endotoxin. Am Rev Respir Dis 140:981–986PubMedGoogle Scholar
  161. 161.
    Borm PJ, van Hartingsveld B, Schins PF et al (1999) Priming of cytokine release and increased levels of bactericidal permeability-increasing protein in the blood of animal facility workers. Int Arch Occup Environ Health 72:323–329PubMedCrossRefGoogle Scholar
  162. 162.
    Lieutier-Colas F, Meyer P, Larsson P et al (2001) Difference in exposure to airborne major rat allergen (Rat n 1) and to endotoxin in rat quarters according to tasks. Clin Exp Allergy 31:1449–1456PubMedCrossRefGoogle Scholar
  163. 163.
    Pacheco KA, McCammon C, Thorne PS et al (2006) Characterization of endotoxin and mouse allergen exposures in mouse facilities and research laboratories. Ann Occup Hyg 50:563–572PubMedCrossRefGoogle Scholar
  164. 164.
    Pikarsky E, Porat RM, Stein I et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466PubMedCrossRefGoogle Scholar
  165. 165.
    Watson RW, Redmond HP, McCarthy J et al (1995) Exposure of the peritoneal cavity to air regulates early inflammatory responses to surgery in a murine model. Br J Surg 82:1060–1065PubMedCrossRefGoogle Scholar
  166. 166.
    Harmey JH, Bucana CD, Lu W et al (2002) Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 101:415–422PubMedCrossRefGoogle Scholar
  167. 167.
    Luo JL, Maeda S, Hsu LC et al (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305PubMedCrossRefGoogle Scholar
  168. 168.
    Neuhaus SJ, Watson DI, Ellis T et al (2000) The effect of immune enhancement and suppression on the development of laparoscopic port site metastases. Surg Endosc 14:439–443PubMedCrossRefGoogle Scholar
  169. 169.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27PubMedGoogle Scholar
  170. 170.
    Chen JJ, Lin YC, Yao PL et al (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964PubMedCrossRefGoogle Scholar
  171. 171.
    Mantovani A, Romero P, Palucka AK et al (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783PubMedCrossRefGoogle Scholar
  172. 172.
    Goswami S, Sahai E, Wyckoff JB et al (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283PubMedCrossRefGoogle Scholar
  173. 173.
    Parajuli P, Singh SM (1996) Alteration in IL-1 and arginase activity of tumor-associated macrophages: a role in the promotion of tumor growth. Cancer Lett 107:249–256PubMedCrossRefGoogle Scholar
  174. 174.
    Sunderkotter C, Steinbrink K, Goebeler M et al (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422PubMedGoogle Scholar
  175. 175.
    Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedCrossRefGoogle Scholar
  176. 176.
    Baniyash M (2006) Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol 16:80–88PubMedCrossRefGoogle Scholar
  177. 177.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  178. 178.
    Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117:1175–1183PubMedCrossRefGoogle Scholar
  179. 179.
    Lacy AM, Delgado S, Castells A et al (2008) The long-term results of a randomized clinical trial of laparoscopy-assisted versus open surgery for colon cancer. Ann Surg 248:1–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jonathan C. Salo
    • 1
  1. 1.Division of Surgical Oncology, Department of General SurgeryCarolinas Medical CenterCharlotteUSA

Personalised recommendations