Advertisement

Infections and Cancer

  • Bernardo L. Rapoport
  • Ronald Feld
Chapter

Abstract

Infections are major causes of morbidity and mortality in cancer patients. The risk of infection is determined by the intensity and duration of immunosuppressive chemotherapy. In patients with hematological malignancies, the underlining malignancy itself may be associated with immune defects. In solid tumors, anatomical factors may predispose patients to infection. Other predisposing factors include intravenous devices, neutropenia due to underlying disease, mucosal integrity, treatment with corticosteroids, usage of monoclonal antibodies, splenic function, and treatment with chemotherapy or radiation therapy. Patients with neutropenic fever often have an established or an occult infection. Bacteremia is documented in approximately a quarter of these patients. In terms of risk assessment, the MSACC has pioneered work in this field and developed an index that predicts for high risk or low risk of medical complications.

The index consists of seven independent prognostic factors with an assigned integer value. The index consists of the sum of these integers. A MASCC risk index equal or greater than 21 identifies low-risk patients with a positive predictive value of 91% (specificity 68% and sensitivity 71%). Patients with low risk may be managed in the outpatient setting.

Keywords

Chronic Lymphocytic Leukemia Febrile Neutropenia Herpes Zoster Absolute Neutrophil Count Invasive Aspergillosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Morrison VA. Infectious complications in patients with chronic lymphocytic leukemia: pathogenesis, spectrum of infection, and approaches to prophylaxis. Clin Lymphoma Myeloma. 2009; 9: 365–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Savage DG, Lindenbaum J, Garrett TJ. Biphasic pattern of bacterial infection in multiple myeloma. Ann Intern Med. 1982; 96: 47–50.PubMedGoogle Scholar
  3. 3.
    Nucci M, Anaissie E. Infections in patients with multiple myeloma. Semin Hematol. 2009; 46: 277–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Kraut EH. Clinical manifestations and infectious complications of hairy-cell leukaemia. Best Pract Res Clin Haematol. 2003; 16: 33–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Fisher RI, DeVita VT Jr, Bostick F, Vanhaelen C, Howser DM, Hubbard SM, Young RC. Persistent immunologic abnormalities in long-term survivors of advanced Hodgkin’s disease. Ann Intern Med. 1980; 92: 595–9.PubMedGoogle Scholar
  6. 6.
    Lavoie JC, Connors JM, Phillips GL, Reece DE, Barnett MJ, Forrest DL, Gascoyne RD, Hogge DE, Nantel SH, Shepherd JD, Smith CA, Song KW, Sutherland HJ, Toze CL, Voss NJ, Nevill TJ. High-dose chemotherapy and autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma: long-term outcome in the first 100 patients treated in Vancouver. Blood. 2005; 106: 1473–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Bower M, Palmieri C, Dhillon T. AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis. 2006; 19: 14–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Vescia S, Baumgärtner AK, Jacobs VR, Kiechle-Bahat M, Rody A, Loibl S, Harbeck N. Management of venous port systems in oncology: a review of current evidence. Ann Oncol. 2008; 19: 9–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med. 1966; 64: 328–40.PubMedGoogle Scholar
  10. 10.
    Gerson SL, Talbot GH, Hurwitz S, et al. Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med. 1984; 100: 345–51.PubMedGoogle Scholar
  11. 11.
    Bhatti Z, Shaukat A, Almyroudis NG, Segal BH. Review of epidemiology, diagnosis, and treatment of invasive mould infections in allogeneic hematopoietic stem cell transplant recipients. Myco­pathologia. 2006; 162: 1–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Löwenberg M, Stahn C, Hommes DW, Buttgereit F. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids. 2008; 73: 1025–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Cvetković RS, Perry CM. Rituximab: a review of its use in non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs. 2006; 66: 791–820.PubMedCrossRefGoogle Scholar
  14. 14.
    Shortt J, Spencer A. Adjuvant rituximab causes prolonged hypogammaglobulinaemia following autologous stem cell transplant for non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2007; 40: 597–8.CrossRefGoogle Scholar
  15. 15.
    Cattaneo C, Spedini P, Casari S, Re A, Tucci A, Borlenghi E, Ungari M, Ruggeri G, Rossi G. Delayed-onset peripheral blood cytopenia after rituximab: frequency and risk factor assessment in a consecutive series of 77 treatments. Leuk Lymphoma. 2006 Jun; 47: 965–6.CrossRefGoogle Scholar
  16. 16.
    Aksoy S, Harputluoglu H, Kilickap S, Dede DS, Dizdar O, Altundag K, Barista I. Rituximab-related viral infections in lymphoma patients. Leuk Lymphoma. 2007; 48: 1257–8.CrossRefGoogle Scholar
  17. 17.
    Elter T, Vehreschild JJ, Gribben J, Cornely OA, Engert A, Hallek M. Management of infections in patients with chronic lymphocytic ­leukemia treated with alemtuzumab. Ann Hematol. 2009; 88: 121–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Cadili A, de Gara C. Complications of splenectomy. Am J Med. 2008; 121: 371–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Parody R, Martino R, Rovira M, Vazquez L, Vázquez MJ, de la Cámara R, Blazquez C, Fernández-Avilés F, Carreras E, Salavert M, Jarque I, Martín C, Martínez F, López J, Torres A, Sierra J, Sanz GF; Infectious/Non-infectious Complications Subcommittee of the Grupo Español de Trasplante Hematopoyético (GETH). Severe infections after unrelated donor allogeneic hematopoietic stem cell transplantation in adults: comparison of cord blood transplantation with peripheral blood and bone marrow transplantation. Biol Blood Marrow Transplant. 2006; 12: 734–48.PubMedCrossRefGoogle Scholar
  20. 20.
    Klastersky J. The changing face of febrile neutropenia-from monotherapy to moulds to mucositis. Why empirical therapy? J Antimicrob Chemother. 2009; 63: 14–5.CrossRefGoogle Scholar
  21. 21.
    Schimpff S, Satterlee W, Young VM, Serpick A. Empiric therapy with carbenicillin and gentamicin for febrile patients with cancer and granulocytopenia. N Engl J Med. 1971; 284: 1061–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Paul M, Borok S, Fraser A, Vidal L, Cohen M, Leibovici L. Additional anti-Gram-positive antibiotic treatment for febrile neutropenic cancer patients. Cochrane Database Syst Rev. 2005; 20: CD003914.Google Scholar
  23. 23.
    Paul M, Yahav D, Fraser A, Leibovici L. Empirical antibiotic monotherapy for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2006; 57: 176–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Paul M, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis. BMJ. 2003; 326: 1111–19.PubMedCrossRefGoogle Scholar
  25. 25.
    Paul M, Soares-Weiser K, Grozinsky S, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropaenia. Cochrane Database Syst Rev. 2003; 3: CD003038.PubMedGoogle Scholar
  26. 26.
    Linden PK. Optimizing therapy for vancomycin-resistant enterococci (VRE). Semin Respir Crit Care Med. 2007; 28: 632–45.PubMedCrossRefGoogle Scholar
  27. 27.
    European Organization for Research and Treatment of Cancer (EORTC) International Antimicrobial Therapy Cooperative Group and the National Cancer Institute of Canada-Clinical Trials Group. Vancomycin added to empirical combination antibiotic therapy for fever in granulocytopenic cancer patients. J Infect Dis. 1991; 63: 951–8.CrossRefGoogle Scholar
  28. 28.
    Hughes WT, Armstrong D, Bodey GP, Bow EJ, Brown AE, Calandra T, Feld R, Pizzo PA, Rolston KV, Shenep JL, Young LS. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis. 2002; 34: 730–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Hope WW, Walsh TJ, Denning DW. Laboratory diagnosis of invasive aspergillosis. Lancet Infect Dis. 2005; 5: 609–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Girmenia C, Micozzi A, Gentile G, Santilli S, Arleo E, Cardarelli L, Capria S, Minotti C, Cartoni C, Brocchieri S, Guerrisi V, Meloni G, Foà R, Martino P. Clinically driven diagnostic antifungal approach in neutropenic patients: a prospective feasibility study. JCO Early Release, published online ahead of print Oct 19 2009. Journal of Clinical Oncology, 10.1200/JCO.2009.21.8032.Google Scholar
  31. 31.
    Maertens J, Theunissen K, Verhoef G, Verschakelen J, Lagrou K, Verbeken E, Wilmer A, Verhaegen J, Boogaerts M, Van Eldere J. Galactomannan and computed tomography-based preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: a prospective feasibility study. Clin Infect Dis. 2005; 41: 1242–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Mennink-Kersten MA, Warris A, Verweij PE. 1,3-β-d-Glucan in patients receiving intravenous amoxicillin-clavulanic acid. N Engl J Med. 2006; 354: 2834–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Pizzo PA, Robichaud KJ, Gill FA, Witebsky FG. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am J Med. 1982; 72: 101–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Walsh TJ, Pappas P, Winston DJ, Lazarus HM, Petersen F, Raffalli J, Yanovich S, Stiff P, Greenberg R, Donowitz G, Schuster M, Reboli A, Wingard J, Arndt C, Reinhardt J, Hadley S, Finberg R, Laverdière M, Perfect J, Garber G, Fioritoni G, Anaissie E, Lee J; National Institute of Allergy and Infectious Diseases Mycoses Study Group. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. N Engl J Med. 2002; 346: 225–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, Smietana J, Lupinacci R, Sable C, Kartsonis N, Perfect J; Caspofungin Invasive Candidiasis Study Group. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002; 347: 2020–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Trifilio S, Singhal S, Williams S, Frankfurt O, Gordon L, Evens A, Winter J, Tallman M, Pi J, Mehta J. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007; 40: 451–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Siwek GT, Dodgson KJ, de Magalhaes-Silverman M, Bartelt LA, Kilborn SB, Hoth PL, Diekema DJ, Pfaller MA. Invasive zygomycosis in hematopoietic stem cell transplant recipients receiving voriconazole prophylaxis. Clin Infect Dis. 2004; 39: 584–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Klastersky J, Paesmans M, Rubenstein EB, Boyer M, Elting L, Feld R, Gallagher J, Herrstedt J, Rapoport B, Rolston K, Talcott J.J. The multinational association for supportive care in cancer risk index: a multinational scoring system for identifying low-risk febrile neutropenic cancer patients. Clin Oncol. 2000; 18: 3038–51.Google Scholar
  39. 39.
    Uys A, Rapoport BL, Anderson R. Febrile neutropenia: a prospective study to validate the multinational association of supportive care of cancer (MASCC) risk-index score. Support Care Cancer. 2004; 12: 555–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Klastersky J, Paesmans M, Georgala A, Muanza F, Plehiers B, Dubreucq L, Lalami Y, Aoun M, Barette M. Outpatient oral antibiotics for febrile neutropenic cancer patients using a score predictive for complications. J Clin Oncol. 2006; 24: 4129–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Innes H, Lim SL, Hall A, Chan SY, Bhalla N, Marshall E. Management of febrile neutropenia in solid tumours and lymphomas using the multinational association for supportive care in cancer (MASCC) risk index: feasibility and safety in routine clinical practice. Support Care Cancer. 2008; 16: 485–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Rolston KV, Rubenstein EB, Freifeld A. Early empiric antibiotic therapy for febrile neutropenia patients at low risk. Infect Dis Clin North Am. 1996; 10: 223–37.PubMedCrossRefGoogle Scholar
  43. 43.
    Rapoport BL, Sussmann O, Herrera MV, Schlaeffer F, Otero JC, Pavlovsky S, Iglesias L, Stein G, Charnas R, Heitlinger E, Handschin J. Ceftriaxone plus once daily aminoglycoside with filgrastim for treatment of febrile neutropenia: early hospital discharge vs. standard in-patient care. Chemotherapy. 1999; 45: 466–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, Bennett CL, Cantor SB, Crawford J, Cross SJ, Demetri G, Desch CE, Pizzo PA, Schiffer CA, Schwartzberg L, Somerfield MR, Somlo G, Wade JC, Wade JL, Winn RJ, Wozniak AJ, Wolff AC. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006; 24: 3187–205.PubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2010

Authors and Affiliations

  1. 1.Department of Medical OncologyThe Medical Oncology Centre of RosebankJohannesburgSouth Africa

Personalised recommendations