Advertisement

Semantic Enhancement of Social Tagging Systems

  • Fabian Abel
  • Nicola Henze
  • Daniel Krause
  • Matthias Kriesell
Chapter
Part of the Annals of Information Systems book series (AOIS, volume 6)

Abstract

Social tagging systems have shown an impressive potential for information discovery and exploration. Enriched with Semantic Web technologies, they enable to tap valuable metadata about Web resources and to detect hidden relations, thus, to capture information about both content and context of the resources. In this article, we propose a novel way to combine semantic technologies with Web 2.0 paradigms. We introduce the GroupMe! system, which extends current social tagging systems by giving users more flexibility in organizing and maintaining Web content. In GroupMe!, users can create groups of Web resources they consider relevant by simple drag & drop operations. They can tag and share their groups and Web content with fellow users and benefit from improved search and retrieval capabilities. We evaluate the GroupMe! approach and investigate on the effect of grouping resources for search in tag-based social systems. Our experiments show that the quality of search result ranking can be significantly improved by introducing and exploiting the grouping of resources.

Keywords

Ranking Algorithm Group Context Ranking Strategy Social Bookmark Zoomable Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Nicole Ullmann, Mischa Frank, Daniel Plappert, Patrick Siehndel, and Zhivko Asenov for their contribution and engagement in realizing the GroupMe! system.

References

  1. 1.
    Abel, F., Frank, M., Henze, N., Krause, D., Plappert, D., Siehndel, P.: GroupMe! – Where Semantic Web meets Web 2.0. In: Int. Semantic Web Conference (ISWC 2007) (November 2007)Google Scholar
  2. 2.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: FolkRank: A ranking algorithm for folksonomies. In: Proc. of Workshop on Information Retrieval 2006 of the Special Interest Group Information Retrieval (FGIR 2006), Hildesheim, Germany (October 2006)Google Scholar
  3. 3.
    Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. In: Proc. of the 22nd Int. Conf. on Software Engineering (ICSE ’00), New York, NY, USA, ACM Press (2000) 407–416Google Scholar
  4. 4.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, flickr, academic article, to read. In: Proc. of the 17th Conf. on Hypertext and Hypermedia (HYPERTEXT ’06), New York, NY, USA, ACM Press (2006) 31–40Google Scholar
  5. 5.
    Vander Wal, T.: Folksonomy. http://vanderwal.net/folksonomy.html (July 2007)
  6. 6.
    Vander Wal, T.: Explaining and showing broad and narrow folksonomies. http://www.personalinfocloud.com/2005/02/explaining_and_.html (February 2005)
  7. 7.
    Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proc. of 16th Int. World Wide Web Conference (WWW ’07), New York, NY, USA, ACM Press (2007) 211–220Google Scholar
  8. 8.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Proc. Int. Semantic Web Conference (ISWC 2005). (November 2005) 522–536Google Scholar
  9. 9.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A social bookmark and publication sharing system. In : de Moor, A., Polovina, S., Delugach, H., eds.: Proc. First Conceptual Structures Tool Interoperability Workshop, Aalborg (2006) 87–102Google Scholar
  10. 10.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the Semantic Web. In: Proc. of 15th Int. World Wide Web Conference (WWW ’06), New York, NY, USA, ACM Press (2006) 417–426Google Scholar
  11. 11.
    Brickley, D., Miles, A.: SKOS Core Vocabulary Specification. W3C working draft, W3C (November 2005) http://www.w3.org/TR/swbp-skos-core-spec
  12. 12.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing Order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  13. 13.
    Abel, F., Henze, N., Krause, D.: A Novel Approach to Social Tagging: GroupMe! In: 4th Int. Conf. on Web Information Systems and Technologies (WEBIST). (May 2008)Google Scholar
  14. 14.
    Haveliwala, T.H.: Topic-sensitive PageRank: A context-sensitive ranking algorithm for Web search. IEEE Transactions on Knowledge and Data Engineering 15(4) (2003) 784–796CrossRefGoogle Scholar
  15. 15.
    O’Reily, T.: What is web 2.0? – design patterns and business models for the next generation of software (September 2005)Google Scholar
  16. 16.
    Kerne, A., Koh, E., Dworaczyk, B., Mistrot, J.M., Choi, H., Smith, S.M., Graeber, R., Caruso, D., Webb, A., Hill, R., Albea, J.: combinFormation: A mixed-initiative system for representing collections as compositions of image and text surrogates. In: Proc. of the ACM/IEEE Joint Conference on Digital Libraries (JCDL 2006), Chapel Hill, NC, USA, ACM Press (June 2006) 11–20Google Scholar
  17. 17.
    Merholz, P.: Metadata for the masses. Adaptive Path (October 2004)Google Scholar
  18. 18.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: Proc. of 15th Int. World Wide Web Conference (WWW ’06), New York, NY, USA, ACM Press (2006) 193–202Google Scholar
  19. 19.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead. In: Collaborative Web Tagging Workshop at WWW ’06. (May 2006)Google Scholar
  20. 20.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing Web search using social annotations. In: Proc. of 16th Int. World Wide Web Conference (WWW ’07), New York, NY, USA, ACM Press (2007) 501–510Google Scholar
  21. 21.
    Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: Proc. of Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD), Edmonton, Alberta, Canada, ACM Press (July 2002)Google Scholar
  22. 22.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Emergent Semantics in BibSonomy. In Hochberger, C., Liskowsky, R., eds.: Informatik 2006: Informatik für Menschen. Volume 94(2) of LNI., Bonn, GI (October 2006)Google Scholar
  23. 23.
    Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: Proc. of the 30th Int. ACM SIGIR Conf. on Information Retrieval (SIRIR ’07), New York, NY, USA, ACM Press (2007) 103–110Google Scholar
  24. 24.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5) (2001) 34–43CrossRefGoogle Scholar
  25. 25.
    Naaman, M.: The Semantic Web is dead. In: Panel Discussion: The Role of Multimedia Metadata Standards in a (Semantic) Web 3.0, 16th Int. World Wide Web Conference (WWW ’07). (May 2007)Google Scholar
  26. 26.
    Ankolekar, A., Krötzsch, M., Tran, T., Vrandecic, D.: The two cultures: Mashing up Web 2.0 and the Semantic Web. In: Proc. of 16th Int. World Wide Web Conference (WWW ’07), New York, NY, USA, ACM Press (2007) 825–834Google Scholar
  27. 27.
    Berners-Lee, T.: Linked Data – design issues. Technical report, W3C (May 2007) http://www.w3.org/DesignIssues/LinkedData.html
  28. 28.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91. Namespace document, FOAF Project (November 2007) http://xmlns.com/foaf/0.1/
  29. 29.
    Oren, E., Völkel, M., Breslin, J.G., Decker, S.: Semantic Wikis for personal knowledge management. In: Bressan, S., Küng, J., Wagner, R., eds.: Proc. of the 17th Int. Conf. on Database and Expert Systems Applications (DEXA 2006). Volume 4080 of LNCS., Kraków, Poland, Springer (September 2006) 509–518Google Scholar
  30. 30.
    Cayzer, S.: Semantic blogging and decentralized knowledge management. Commun. ACM 47(12) (December 2004) 47–52CrossRefGoogle Scholar
  31. 31.
    Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations from heterogeneous sources of evidence. In: Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in AI. IOS Press (2005) 59–73Google Scholar
  32. 32.
    Michlmayr, E., Cayzer, S.: Learning user profiles from tagging data and leveraging them for personal(ized) information access. In: Proc. of the Workshop on Tagging and Metadata for Social Information Organization, 16th Int. World Wide Web Conference (WWW ’07). (May 2007)Google Scholar
  33. 33.
    Michlmayr, E., Cayzer, S., Shabajee, P.: Add-A-Tag: Learning Adaptive user profiles from bookmark collections. In: Proc. of the 1st Int. Conf. on Weblogs and Social Media (ICWSM ’06). (March 2007)Google Scholar
  34. 34.
    Firan, C.S., Nejdl, W., Paiu, R.: The benefit of using tag-based profiles. In: Proc. of the 2007 Latin American Web Conference (LA-WEB 2007), Washington, DC, USA, IEEE Computer Society (2007) 32–41Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fabian Abel
    • 1
  • Nicola Henze
    • 1
  • Daniel Krause
    • 1
  • Matthias Kriesell
    • 2
  1. 1.IVS – Semantic Web GroupLeibniz University HannoverHannoverGermany
  2. 2.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations