Skip to main content

Algebraic Constraints on the Gain Matrix

  • Chapter
  • First Online:
Book cover Control of Complex Systems

Abstract

Conventional decentralized state feedback and its variations need not always be adequate control strategies for practical large-scale problems. It often happens, for example, that certain subsystem state variables are not available for control purposes, in which case it is necessary to apply some form of output feedback. This type of control requires a special factorization of the gain matrix, which can be represented as a set of algebraic constraints in the LMI optimization. It turns out that similar constraints also arise in the context of singular systems, as well as in problems where the gain matrix has an arbitrary structure. With that in mind, in the following we will consider how such requirements can be incorporated into the design strategy described in Chap. 2. In doing so, we will devote special attention to techniques that are capable of reducing the computational effort (which is a critical consideration in the context of large-scale systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghdam, A. G. and E. J. Davison (2008). Discrete-time control of continuous systems with approximate decentralized fixed modes. Automatica, 44, 75–87.

    Article  MATH  MathSciNet  Google Scholar 

  • Aizerman, M. A. and F. R. Gantmacher (1964). Absolute Stability of Regulator Systems. Information System Series, Holden-Day, San Francisco, CA.

    Google Scholar 

  • Anderson, B. D. O. and D. J. Clements (1981). Algebraic characterization of fixed modes in decentralized control. Automatica, 17, 703–712.

    Article  MathSciNet  Google Scholar 

  • Antoulas, A. (2005). Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA.

    Google Scholar 

  • Arcak, M., M. Larsen and P. Kokotovic (2003). Circle and Popov criteria as tools for nonlinear feedback design. Automatica39, 643–650.

    Article  MATH  MathSciNet  Google Scholar 

  • Bernstein, D. (1992). Some open problems in matrix theory arising in linear systems and control. Linear Algebra and Its Applications, 164, 409–432.

    Article  Google Scholar 

  • Blondel, V., M. Gevers and A. Lindquist (1995). Survey on the state of systems and control. European Journal of Control, 1, 5–23.

    MATH  Google Scholar 

  • Boukas, E. K. (2005). Static output feedback control for linear descriptor systems: LMI approach. Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada, 1230–1234.

    Google Scholar 

  • Cao, Y. -Y., Y. -X. Sun and W. -J. Mao (1998). Output feedback decentralized stabilization: ILMI approach. Systems and Control Letters, 35, 183–194.

    Article  MATH  MathSciNet  Google Scholar 

  • Chaabane, M., O. Bachelier, M. Souissi and D. Mehdi (2006). Stability and stabilization of continuous descriptor systems: An LMI approach. Mathematical Problems in Engineering, Article 39367, 1–15.

    Google Scholar 

  • Dai, L. (1989). Singular Control Systems, Springer, New York.

    Book  MATH  Google Scholar 

  • Duan, Z., J. Wang, G. Chen and L. Huang (2008). Stability analysis and decentralized control of a class of complex dynamical networks. Automatica44, 1028–1035.

    MathSciNet  Google Scholar 

  • Dzhunusov, I. A. and A. L. Fradkov (2009). Adaptive synchronization of a network of interconnected nonlinear Lur’e systems. Automation and Remote Control, 70, 1190–1205.

    Article  MATH  Google Scholar 

  • Elia, N. and S. K. Mitter (2001). Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 46, 1384–1400.

    Article  MATH  MathSciNet  Google Scholar 

  • Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK.

    MATH  Google Scholar 

  • Grigoriadis, K. and R. Skelton (1996). Low-order design for LMI problems using alternating projection methods. Automatica, 32, 1117–1125.

    Article  MATH  MathSciNet  Google Scholar 

  • Gu, G. (1990). Stabilizability conditions of multivariable uncertain systems via output feedback. IEEE Transactions on Automatic Control, 35, 925–927.

    Article  MATH  Google Scholar 

  • Gudi, R. D. and J. B. Rawlings (2006). Identification for decentralized model predictive control. American Institute of Chemical Engineers Journal, 52, 2198–2210.

    Google Scholar 

  • Haddad, W. M. and D. S. Bernstein (1991). Robust stabilization with positive real uncertainty: Beyond the small gain theorem. Systems and Control Letters, 17, 191–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Ho, D. W. C. and G. Lu (2003). Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach. International Journal of Control, 76, 105–115.

    Article  MATH  MathSciNet  Google Scholar 

  • Hodaka, I., N. Sakamoto and M. Suzuki (2000). New results for strict positive realness and feedback stability. IEEE Transactions on Automatic Control, 45, 813–819.

    Article  MATH  MathSciNet  Google Scholar 

  • Hristu, D. and K. Morgansen (1999). Limited communication control. Systems and Control Letters, 37, 193–205.

    Article  MATH  MathSciNet  Google Scholar 

  • Hu, D. and L. Reichel (1992). Krylov-subspace methods for the Sylvester equation. Linear Algebra and Its Applications, 172, 283–313.

    Article  MATH  MathSciNet  Google Scholar 

  • Ikeda, M., T. W. Lee and E. Uezato (2000). A strict LMI condition for H 2 control of descriptor systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 601–604.

    Google Scholar 

  • Ishii, H. and B. A. Francis (2002a). Stabilization with control networks. Automatica, 38, 1745–1751.

    Article  MATH  MathSciNet  Google Scholar 

  • Ishii, H. and B. A. Francis (2002b). Limited Data Rate in Control Systems with Networks. Springer, Berlin.

    MATH  Google Scholar 

  • Iwasaki, T. and R. Skelton (1995). Parametrization of all stabilizing controllers via quadratic Lyapunov functions. Journal of Optimization Theory and Applications, 85, 291–307.

    Article  MATH  MathSciNet  Google Scholar 

  • Iwasaki, T., R. Skelton and J. Geromel (1994). Linear quadratic suboptimal control with static output feedback. Systems and Control Letters, 23, 421–430.

    Article  MathSciNet  Google Scholar 

  • Jaimoukha, I. and E. Kasenally (1994). Krylov subspace methods for solving large Lyapunov equations. SIAM Journal on Numerical Analysis, 31, 227–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Kalsi, K., J. Lian and S. H. Żak (2009). Reduced-order observer-based decentralized control of non-linear interconnected systems. International Journal of Control, 82, 1157–1166.

    Article  MATH  MathSciNet  Google Scholar 

  • Kamwa, I., R. Grondin and Y. Hébert (2001). Wide-area measurement based stabilizing control of large power systems – A decentralized/hierarchical approach. IEEE Transactions on Power Systems, 16, 136–153.

    Article  Google Scholar 

  • Karlsson, D., M. Hemmingsson and S. Lindahl (2004). Wide area system monitoring and control. IEEE Power and Energy Magazine, September/October 2004, 69–76.

    Google Scholar 

  • Khalil, H. (2001). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Konstantinov, M., S. Patarinski, P. Petkov and N. Khristov (1977). Synthesis of linear systems with quadratic criterion for structural limitations. Automation and Remote Control, 38, 628–636.

    MATH  MathSciNet  Google Scholar 

  • Langbort, C., R. S. Chandra and R. d’Andrea (2004). Distributed control design for systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, 49, 1502–1519.

    Article  MathSciNet  Google Scholar 

  • Lavaei, J., A. Momeni and A. G. Aghdam (2008). A model predictive decentralized scheme with reduced communication requirement for spacecraft formation. IEEE Transactions on Control Systems Technology, 16, 268–278.

    Article  Google Scholar 

  • Lee, K. H. (2007). Robust decentralized stabilization of a class of linear discrete-time systems with non-linear interactions. International Journal of Control, 80, 1544–1551.

    Article  MATH  MathSciNet  Google Scholar 

  • Leibfritz, F. and E. M. E. Mostafa (2003). Trust region methods for solving the optimal output feedback design problem. International Journal of Control, 76, 501–519.

    Article  MATH  MathSciNet  Google Scholar 

  • Liberzon, D. and J. P. Hespanha (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 50, 910–915.

    Article  MathSciNet  Google Scholar 

  • Lin, J. Y. and N. U. Ahmed (1991). Approach to controllability problems for singular systems. International Journal of System Science, 22, 675–690.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, X., J. Wang and L. Huang (2007). Stabilization of a class of dynamical complex networks based on decentralized control. Physica A, 383, 733–744.

    Article  Google Scholar 

  • Lur’e, A. I. (1957). Some Nonlinear Problems in the Theory of Automatic Control. Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Lur’e, A. I. and V. N. Postnikov (1944). On the theory of stability of control systems. Prikladnaya Matematika i Mekhanika, 8, 246–248 (in Russian).

    Google Scholar 

  • Malik, W. A., S. Kang, S. Darbha and S. P. Bhattacharyya (2008). Synthesis of absolutely stabilizing controllers. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 3589–3594.

    Google Scholar 

  • Matsumoto, T. (1984). A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and Systems, 31, 1055–1058.

    Article  MATH  Google Scholar 

  • Nagashio, T. and T. Kida (2009). Robust control of flexible mechanical systems by utilizing symmetry and its application to large space structures. IEEE Transactions on Control System Technology, 17, 671–680.

    Article  Google Scholar 

  • Narendra, K. S. and J. H. Taylor (1973). Frequency Domain Criteria for Absolute Stability. Academic, New York.

    MATH  Google Scholar 

  • Narendra, K. S., N. Oleng and S. Mukhopadhyay (2006). Decentralised adaptive control with partial communication. IEE Proceedings – Control Theory and Applications, 153, 546–555.

    Google Scholar 

  • de Oliveira, M. C., J. C. Geromel and J. Bernussou (2000). Design of dynamic output feedback decentralized controllers via a separation procedure. International Journal of Control, 73, 371–381.

    Article  MATH  MathSciNet  Google Scholar 

  • Pagilla, P. R. and Y. Zhu (2005). A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems. Journal of Dynamic Systems, Measurement and Control, 127, 167–172.

    Article  Google Scholar 

  • Parker, T. S. and L. O. Chua (1989). Practical Numerical Algorithms for Chaotic Systems. Springer, New York.

    MATH  Google Scholar 

  • Popov, V. M. (1962). On the absolute stability of nonlinear control systems. Automation and Remote Control, 22, 857–875.

    Google Scholar 

  • Popov, V. M. (1973). Hyperstability of Control Systems. Springer, New York.

    MATH  Google Scholar 

  • Rautert, T. and E. W. Sachs (1997). Computational design of optimal output feedback controllers. SIAM Journal on Optimization, 7, 837–852.

    Article  MATH  MathSciNet  Google Scholar 

  • Saeki, M. (2006). Fixed structure PID controller design for standard H control problem. Automatica, 42, 93–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Scorletti, G. and G. Duc (2001). An LMI approach to decentralized control. International Journal of Control, 74, 211–224.

    Article  MATH  MathSciNet  Google Scholar 

  • Sezer, M. E. and D. D. Šiljak (1981). On structurally fixed modes. Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, IL, 558–565.

    Google Scholar 

  • Šiljak, D. D. (1969). Nonlinear Systems. Wiley, New York.

    MATH  Google Scholar 

  • Šiljak, D. D. (1971). New algebraic criteria for positive realness. Journal of the Franklin Institute, 291, 109–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Šiljak, D. D. (1978). Large-Scale Dynamic Systems: Stability and Structure. North-Holland, New York.

    MATH  Google Scholar 

  • Šiljak, D. D. (1991). Decentralized Control of Complex Systems. Academic, Cambridge, MA.

    Google Scholar 

  • Stanković, S. S. and D. D. Šiljak (2009). Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback. Systems and Control Letters, 58, 271–279.

    Article  MATH  MathSciNet  Google Scholar 

  • Stipanović, D. M. and D. D. Šiljak (2001). Robust stability and stabilization of discrete-time non-linear systems: The LMI approach. International Journal of Control, 74, 873–879.

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, W., P. P. Khargonekar and D. Shim (1994). Solution to the positive real control problem for linear time-invariant systems. IEEE Transactions on Automatic Control, 39, 2034–2046.

    Article  MATH  MathSciNet  Google Scholar 

  • Swarnakar, A., H. J. Marquez and T. Chen (2008). A new scheme on robust observer-based control design for interconnected systems with application to a industrial utility boiler. IEEE Transactions on Control Systems Technology, 16, 539–547.

    Article  Google Scholar 

  • Syrmos, V. L., C. T. Abdallah, P. Dorato and K. Grigoriadis (1997). Static output feedback – a survey. Automatica, 33, 125–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Tao, G. and P. A. Ioannou (1988). Strictly positive real matrices and the Lefschetz–Kalman–Yakubovich Lemma. IEEE Transactions on Automatic Control, 33, 1183–1185.

    Article  MATH  MathSciNet  Google Scholar 

  • Trofino-Neto, A. and V. Kucera (1993). Stabilization via static output feedback. IEEE Transactions on Automatic Control, 38, 764–765.

    Article  MATH  MathSciNet  Google Scholar 

  • Uezato, E. and M. Ikeda (1999). Strict LMI conditions for stability, robust stabilization and H control of descriptor systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 4092–4097.

    Google Scholar 

  • Vandenberghe, L. and S. Boyd (1996). Semidefinite programming. SIAM Review, 38, 49–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Walsh, G., O. Beldiman and L. Bushnell (2001). Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46, 1093–1097.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberg, L. (1962). Network Analysis and Synthesis. McGraw-Hill, New York.

    Google Scholar 

  • Wen, J. T. (1988). Time domain and frequency domain conditions for strict positive realness. IEEE Transactions on Automatic Control, 33, 988–992.

    Article  MATH  Google Scholar 

  • Wenk, C. and C. Knapp (1980). Parameter optimization in linear systems with arbitrarily constrained controller structure. IEEE Transactions on Automatic Control, 25, 496–500.

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, S. and J. Lam (2006). Robust Control and Filtering of Singular Systems. Springer, New York.

    MATH  Google Scholar 

  • Yakubovich, V. A. (1977). The S-procedure in nonlinear control theory. Vestnik Leningrad University. Mathematics, 4, 73–93.

    Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2003). A parallel Krylov – Newton algorithm for accurate solutions of large, sparse Riccati equations. In: Practical Applications of Parallel Computing, L. T. Yang and M. Paprzycki (Eds.), Nova Science Publishers, New York, 49–65.

    Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2004). Design of static output feedback for large-scale systems. IEEE Transactions on Automatic Control, 49, 2040–2044.

    Article  Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2005). Control of large-scale systems in a multiprocessor environment. Applied Mathematics and Computation, 164, 531–543.

    Article  MATH  MathSciNet  Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2008). Control design with arbitrary information structure constraints. Automatica, 44, 2642–2647.

    Article  MATH  Google Scholar 

  • Zečević, A. I. and D. D. Šiljak (2010). Stabilization of large-scale nonlinear systems by modifying the interconnection network. International Journal of Control (to appear).

    Google Scholar 

  • Zečević, A. I., E. Cheng and D. D. Šiljak (2010). Control design for large-scale Lur’e systems with arbitrary information structure constraints. Applied Mathematics and Computation (to appear).

    Google Scholar 

  • Zhu, Y. and P. R. Pagilla (2006). Decentralized output feedback control of a class of large-scale interconnected systems. IMA Journal of Mathematical Control and Information, 24, 57–69.

    Article  MathSciNet  Google Scholar 

  • Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar I. Zečević .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zečević, A.I., Šiljak, D.D. (2010). Algebraic Constraints on the Gain Matrix. In: Control of Complex Systems. Communications and Control Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1216-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1216-9_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1215-2

  • Online ISBN: 978-1-4419-1216-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics