Algebraic Constraints on the Gain Matrix

  • Aleksandar I. Zečević
  • Dragoslav D. Šiljak
Part of the Communications and Control Engineering book series (CCE)


Conventional decentralized state feedback and its variations need not always be adequate control strategies for practical large-scale problems. It often happens, for example, that certain subsystem state variables are not available for control purposes, in which case it is necessary to apply some form of output feedback. This type of control requires a special factorization of the gain matrix, which can be represented as a set of algebraic constraints in the LMI optimization. It turns out that similar constraints also arise in the context of singular systems, as well as in problems where the gain matrix has an arbitrary structure. With that in mind, in the following we will consider how such requirements can be incorporated into the design strategy described in Chap. 2. In doing so, we will devote special attention to techniques that are capable of reducing the computational effort (which is a critical consideration in the context of large-scale systems).


Output Feedback Interconnection Network Singular System Absolute Stability Gain Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghdam, A. G. and E. J. Davison (2008). Discrete-time control of continuous systems with approximate decentralized fixed modes. Automatica, 44, 75–87.MATHCrossRefMathSciNetGoogle Scholar
  2. Aizerman, M. A. and F. R. Gantmacher (1964). Absolute Stability of Regulator Systems. Information System Series, Holden-Day, San Francisco, CA.Google Scholar
  3. Anderson, B. D. O. and D. J. Clements (1981). Algebraic characterization of fixed modes in decentralized control. Automatica, 17, 703–712.CrossRefMathSciNetGoogle Scholar
  4. Antoulas, A. (2005). Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA.Google Scholar
  5. Arcak, M., M. Larsen and P. Kokotovic (2003). Circle and Popov criteria as tools for nonlinear feedback design. Automatica39, 643–650.MATHCrossRefMathSciNetGoogle Scholar
  6. Bernstein, D. (1992). Some open problems in matrix theory arising in linear systems and control. Linear Algebra and Its Applications, 164, 409–432.CrossRefGoogle Scholar
  7. Blondel, V., M. Gevers and A. Lindquist (1995). Survey on the state of systems and control. European Journal of Control, 1, 5–23.MATHGoogle Scholar
  8. Boukas, E. K. (2005). Static output feedback control for linear descriptor systems: LMI approach. Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada, 1230–1234.Google Scholar
  9. Cao, Y. -Y., Y. -X. Sun and W. -J. Mao (1998). Output feedback decentralized stabilization: ILMI approach. Systems and Control Letters, 35, 183–194.MATHCrossRefMathSciNetGoogle Scholar
  10. Chaabane, M., O. Bachelier, M. Souissi and D. Mehdi (2006). Stability and stabilization of continuous descriptor systems: An LMI approach. Mathematical Problems in Engineering, Article 39367, 1–15.Google Scholar
  11. Dai, L. (1989). Singular Control Systems, Springer, New York.MATHCrossRefGoogle Scholar
  12. Duan, Z., J. Wang, G. Chen and L. Huang (2008). Stability analysis and decentralized control of a class of complex dynamical networks. Automatica44, 1028–1035.MathSciNetGoogle Scholar
  13. Dzhunusov, I. A. and A. L. Fradkov (2009). Adaptive synchronization of a network of interconnected nonlinear Lur’e systems. Automation and Remote Control, 70, 1190–1205.MATHCrossRefGoogle Scholar
  14. Elia, N. and S. K. Mitter (2001). Stabilization of linear systems with limited information. IEEE Transactions on Automatic Control, 46, 1384–1400.MATHCrossRefMathSciNetGoogle Scholar
  15. Graham, A. (1981). Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK.MATHGoogle Scholar
  16. Grigoriadis, K. and R. Skelton (1996). Low-order design for LMI problems using alternating projection methods. Automatica, 32, 1117–1125.MATHCrossRefMathSciNetGoogle Scholar
  17. Gu, G. (1990). Stabilizability conditions of multivariable uncertain systems via output feedback. IEEE Transactions on Automatic Control, 35, 925–927.MATHCrossRefGoogle Scholar
  18. Gudi, R. D. and J. B. Rawlings (2006). Identification for decentralized model predictive control. American Institute of Chemical Engineers Journal, 52, 2198–2210.Google Scholar
  19. Haddad, W. M. and D. S. Bernstein (1991). Robust stabilization with positive real uncertainty: Beyond the small gain theorem. Systems and Control Letters, 17, 191–208.MATHCrossRefMathSciNetGoogle Scholar
  20. Ho, D. W. C. and G. Lu (2003). Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach. International Journal of Control, 76, 105–115.MATHCrossRefMathSciNetGoogle Scholar
  21. Hodaka, I., N. Sakamoto and M. Suzuki (2000). New results for strict positive realness and feedback stability. IEEE Transactions on Automatic Control, 45, 813–819.MATHCrossRefMathSciNetGoogle Scholar
  22. Hristu, D. and K. Morgansen (1999). Limited communication control. Systems and Control Letters, 37, 193–205.MATHCrossRefMathSciNetGoogle Scholar
  23. Hu, D. and L. Reichel (1992). Krylov-subspace methods for the Sylvester equation. Linear Algebra and Its Applications, 172, 283–313.MATHCrossRefMathSciNetGoogle Scholar
  24. Ikeda, M., T. W. Lee and E. Uezato (2000). A strict LMI condition for H 2 control of descriptor systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 601–604.Google Scholar
  25. Ishii, H. and B. A. Francis (2002a). Stabilization with control networks. Automatica, 38, 1745–1751.MATHCrossRefMathSciNetGoogle Scholar
  26. Ishii, H. and B. A. Francis (2002b). Limited Data Rate in Control Systems with Networks. Springer, Berlin.MATHGoogle Scholar
  27. Iwasaki, T. and R. Skelton (1995). Parametrization of all stabilizing controllers via quadratic Lyapunov functions. Journal of Optimization Theory and Applications, 85, 291–307.MATHCrossRefMathSciNetGoogle Scholar
  28. Iwasaki, T., R. Skelton and J. Geromel (1994). Linear quadratic suboptimal control with static output feedback. Systems and Control Letters, 23, 421–430.CrossRefMathSciNetGoogle Scholar
  29. Jaimoukha, I. and E. Kasenally (1994). Krylov subspace methods for solving large Lyapunov equations. SIAM Journal on Numerical Analysis, 31, 227–251.MATHCrossRefMathSciNetGoogle Scholar
  30. Kalsi, K., J. Lian and S. H. Żak (2009). Reduced-order observer-based decentralized control of non-linear interconnected systems. International Journal of Control, 82, 1157–1166.MATHCrossRefMathSciNetGoogle Scholar
  31. Kamwa, I., R. Grondin and Y. Hébert (2001). Wide-area measurement based stabilizing control of large power systems – A decentralized/hierarchical approach. IEEE Transactions on Power Systems, 16, 136–153.CrossRefGoogle Scholar
  32. Karlsson, D., M. Hemmingsson and S. Lindahl (2004). Wide area system monitoring and control. IEEE Power and Energy Magazine, September/October 2004, 69–76.Google Scholar
  33. Khalil, H. (2001). Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  34. Konstantinov, M., S. Patarinski, P. Petkov and N. Khristov (1977). Synthesis of linear systems with quadratic criterion for structural limitations. Automation and Remote Control, 38, 628–636.MATHMathSciNetGoogle Scholar
  35. Langbort, C., R. S. Chandra and R. d’Andrea (2004). Distributed control design for systems interconnected over an arbitrary graph. IEEE Transactions on Automatic Control, 49, 1502–1519.CrossRefMathSciNetGoogle Scholar
  36. Lavaei, J., A. Momeni and A. G. Aghdam (2008). A model predictive decentralized scheme with reduced communication requirement for spacecraft formation. IEEE Transactions on Control Systems Technology, 16, 268–278.CrossRefGoogle Scholar
  37. Lee, K. H. (2007). Robust decentralized stabilization of a class of linear discrete-time systems with non-linear interactions. International Journal of Control, 80, 1544–1551.MATHCrossRefMathSciNetGoogle Scholar
  38. Leibfritz, F. and E. M. E. Mostafa (2003). Trust region methods for solving the optimal output feedback design problem. International Journal of Control, 76, 501–519.MATHCrossRefMathSciNetGoogle Scholar
  39. Liberzon, D. and J. P. Hespanha (2005). Stabilization of nonlinear systems with limited information feedback. IEEE Transactions on Automatic Control, 50, 910–915.CrossRefMathSciNetGoogle Scholar
  40. Lin, J. Y. and N. U. Ahmed (1991). Approach to controllability problems for singular systems. International Journal of System Science, 22, 675–690.MATHCrossRefMathSciNetGoogle Scholar
  41. Liu, X., J. Wang and L. Huang (2007). Stabilization of a class of dynamical complex networks based on decentralized control. Physica A, 383, 733–744.CrossRefGoogle Scholar
  42. Lur’e, A. I. (1957). Some Nonlinear Problems in the Theory of Automatic Control. Her Majesty’s Stationary Office, London.Google Scholar
  43. Lur’e, A. I. and V. N. Postnikov (1944). On the theory of stability of control systems. Prikladnaya Matematika i Mekhanika, 8, 246–248 (in Russian).Google Scholar
  44. Malik, W. A., S. Kang, S. Darbha and S. P. Bhattacharyya (2008). Synthesis of absolutely stabilizing controllers. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 3589–3594.Google Scholar
  45. Matsumoto, T. (1984). A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and Systems, 31, 1055–1058.MATHCrossRefGoogle Scholar
  46. Nagashio, T. and T. Kida (2009). Robust control of flexible mechanical systems by utilizing symmetry and its application to large space structures. IEEE Transactions on Control System Technology, 17, 671–680.CrossRefGoogle Scholar
  47. Narendra, K. S. and J. H. Taylor (1973). Frequency Domain Criteria for Absolute Stability. Academic, New York.MATHGoogle Scholar
  48. Narendra, K. S., N. Oleng and S. Mukhopadhyay (2006). Decentralised adaptive control with partial communication. IEE Proceedings – Control Theory and Applications, 153, 546–555.Google Scholar
  49. de Oliveira, M. C., J. C. Geromel and J. Bernussou (2000). Design of dynamic output feedback decentralized controllers via a separation procedure. International Journal of Control, 73, 371–381.MATHCrossRefMathSciNetGoogle Scholar
  50. Pagilla, P. R. and Y. Zhu (2005). A decentralized output feedback controller for a class of large-scale interconnected nonlinear systems. Journal of Dynamic Systems, Measurement and Control, 127, 167–172.CrossRefGoogle Scholar
  51. Parker, T. S. and L. O. Chua (1989). Practical Numerical Algorithms for Chaotic Systems. Springer, New York.MATHGoogle Scholar
  52. Popov, V. M. (1962). On the absolute stability of nonlinear control systems. Automation and Remote Control, 22, 857–875.Google Scholar
  53. Popov, V. M. (1973). Hyperstability of Control Systems. Springer, New York.MATHGoogle Scholar
  54. Rautert, T. and E. W. Sachs (1997). Computational design of optimal output feedback controllers. SIAM Journal on Optimization, 7, 837–852.MATHCrossRefMathSciNetGoogle Scholar
  55. Saeki, M. (2006). Fixed structure PID controller design for standard H control problem. Automatica, 42, 93–100.MATHCrossRefMathSciNetGoogle Scholar
  56. Scorletti, G. and G. Duc (2001). An LMI approach to decentralized control. International Journal of Control, 74, 211–224.MATHCrossRefMathSciNetGoogle Scholar
  57. Sezer, M. E. and D. D. Šiljak (1981). On structurally fixed modes. Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, IL, 558–565.Google Scholar
  58. Šiljak, D. D. (1969). Nonlinear Systems. Wiley, New York.MATHGoogle Scholar
  59. Šiljak, D. D. (1971). New algebraic criteria for positive realness. Journal of the Franklin Institute, 291, 109–120.MATHCrossRefMathSciNetGoogle Scholar
  60. Šiljak, D. D. (1978). Large-Scale Dynamic Systems: Stability and Structure. North-Holland, New York.MATHGoogle Scholar
  61. Šiljak, D. D. (1991). Decentralized Control of Complex Systems. Academic, Cambridge, MA.Google Scholar
  62. Stanković, S. S. and D. D. Šiljak (2009). Robust stabilization of nonlinear interconnected systems by decentralized dynamic output feedback. Systems and Control Letters, 58, 271–279.MATHCrossRefMathSciNetGoogle Scholar
  63. Stipanović, D. M. and D. D. Šiljak (2001). Robust stability and stabilization of discrete-time non-linear systems: The LMI approach. International Journal of Control, 74, 873–879.MATHCrossRefMathSciNetGoogle Scholar
  64. Sun, W., P. P. Khargonekar and D. Shim (1994). Solution to the positive real control problem for linear time-invariant systems. IEEE Transactions on Automatic Control, 39, 2034–2046.MATHCrossRefMathSciNetGoogle Scholar
  65. Swarnakar, A., H. J. Marquez and T. Chen (2008). A new scheme on robust observer-based control design for interconnected systems with application to a industrial utility boiler. IEEE Transactions on Control Systems Technology, 16, 539–547.CrossRefGoogle Scholar
  66. Syrmos, V. L., C. T. Abdallah, P. Dorato and K. Grigoriadis (1997). Static output feedback – a survey. Automatica, 33, 125–137.MATHCrossRefMathSciNetGoogle Scholar
  67. Tao, G. and P. A. Ioannou (1988). Strictly positive real matrices and the Lefschetz–Kalman–Yakubovich Lemma. IEEE Transactions on Automatic Control, 33, 1183–1185.MATHCrossRefMathSciNetGoogle Scholar
  68. Trofino-Neto, A. and V. Kucera (1993). Stabilization via static output feedback. IEEE Transactions on Automatic Control, 38, 764–765.MATHCrossRefMathSciNetGoogle Scholar
  69. Uezato, E. and M. Ikeda (1999). Strict LMI conditions for stability, robust stabilization and H control of descriptor systems. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 4092–4097.Google Scholar
  70. Vandenberghe, L. and S. Boyd (1996). Semidefinite programming. SIAM Review, 38, 49–95.MATHCrossRefMathSciNetGoogle Scholar
  71. Walsh, G., O. Beldiman and L. Bushnell (2001). Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46, 1093–1097.MATHCrossRefMathSciNetGoogle Scholar
  72. Weinberg, L. (1962). Network Analysis and Synthesis. McGraw-Hill, New York.Google Scholar
  73. Wen, J. T. (1988). Time domain and frequency domain conditions for strict positive realness. IEEE Transactions on Automatic Control, 33, 988–992.MATHCrossRefGoogle Scholar
  74. Wenk, C. and C. Knapp (1980). Parameter optimization in linear systems with arbitrarily constrained controller structure. IEEE Transactions on Automatic Control, 25, 496–500.MATHCrossRefMathSciNetGoogle Scholar
  75. Xu, S. and J. Lam (2006). Robust Control and Filtering of Singular Systems. Springer, New York.MATHGoogle Scholar
  76. Yakubovich, V. A. (1977). The S-procedure in nonlinear control theory. Vestnik Leningrad University. Mathematics, 4, 73–93.Google Scholar
  77. Zečević, A. I. and D. D. Šiljak (2003). A parallel Krylov – Newton algorithm for accurate solutions of large, sparse Riccati equations. In: Practical Applications of Parallel Computing, L. T. Yang and M. Paprzycki (Eds.), Nova Science Publishers, New York, 49–65.Google Scholar
  78. Zečević, A. I. and D. D. Šiljak (2004). Design of static output feedback for large-scale systems. IEEE Transactions on Automatic Control, 49, 2040–2044.CrossRefGoogle Scholar
  79. Zečević, A. I. and D. D. Šiljak (2005). Control of large-scale systems in a multiprocessor environment. Applied Mathematics and Computation, 164, 531–543.MATHCrossRefMathSciNetGoogle Scholar
  80. Zečević, A. I. and D. D. Šiljak (2008). Control design with arbitrary information structure constraints. Automatica, 44, 2642–2647.MATHCrossRefGoogle Scholar
  81. Zečević, A. I. and D. D. Šiljak (2010). Stabilization of large-scale nonlinear systems by modifying the interconnection network. International Journal of Control (to appear).Google Scholar
  82. Zečević, A. I., E. Cheng and D. D. Šiljak (2010). Control design for large-scale Lur’e systems with arbitrary information structure constraints. Applied Mathematics and Computation (to appear).Google Scholar
  83. Zhu, Y. and P. R. Pagilla (2006). Decentralized output feedback control of a class of large-scale interconnected systems. IMA Journal of Mathematical Control and Information, 24, 57–69.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Aleksandar I. Zečević
    • 1
  • Dragoslav D. Šiljak
    • 1
  1. 1.Dept. Electrical EngineeringSanta Clara UniversitySanta ClaraUSA

Personalised recommendations