Basic Tools of Multivariate Matching

  • Paul R. Rosenbaum
Part of the Springer Series in Statistics book series (SSS)


The basic tools of multivariate matching are introduced, including the propensity score, distance matrices, calipers imposed using a penalty function, optimal matching, matching with multiple controls and full matching. The tools are illustrated with a tiny example from genetic toxicology (n = 46), an example that is so small that one can keep track of individuals as they are matched using different techniques.


Propensity Score Mahalanobis Distance Pair Match Potential Control Treated Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall (1993)Google Scholar
  2. Avriel, M.: Nonlinear Programming. Upper Saddle River, New Jersey: Prentice Hall. (1976)MATHGoogle Scholar
  3. Bergstralh, E.J., Kosanke, J.L., Jacobsen, S.L.: Software for optimal matching in observational studies. Epidemiology 7, 331–332\ (1996)Google Scholar
  4. Bertsekas, D.P.: A new algorithm for the assignment problem. Math Program 21, 152–171 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. Bertsekas, D.P.: Linear Network Optimization. Cambridge, MA: MIT Press (1991)MATHGoogle Scholar
  6. Braitman, L.E., Rosenbaum, P.R.: Rare outcomes, common treatments: Analytic strategies using propensity scores. Ann Intern Med 137, 693–695 (2002)Google Scholar
  7. Carpaneto, G., Toth, P.: Algorithm 548: Solution of the Assignment Problem [H]. ACM Trans Math Software 6, 104–111 (1980)CrossRefGoogle Scholar
  8. Cochran, W.G.: The planning of observational studies of human populations (with Discussion). J Roy Statist Soc A 128, 234–265.Google Scholar
  9. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. New York: Wiley (1998)MATHGoogle Scholar
  10. Costa, M., Zhitkovich, A., Toniolo, P.: DNA-protein cross-links in welders: Molecular implications. Cancer Res 53, 460–463 (1993)Google Scholar
  11. Dell’Amico, M. and Toth, P.: Algorithms and codes for dense assignment problems: the state of the art. Discrete App Math 100, 17–48 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. New York: Wiley (2001)Google Scholar
  13. Gu, X.S., Rosenbaum, P.R.: Comparison of multivariate matching methods: Structures, distances, and algorithms. J Comput Graph Statist 2, 405–420 (1993)CrossRefGoogle Scholar
  14. Hansen, B.B.: Full matching in an observational study of coaching for the SAT. J Am Statist Assoc 99, 609–618 (2004)MATHCrossRefGoogle Scholar
  15. Hansen, B.B., Klopfer, S.O.: Optimal full matching and related designs via network flows. J Comp Graph Statist 15, 609–627 (2006)CrossRefMathSciNetGoogle Scholar
  16. Hansen, B.B.: Optmatch: Flexible, optimal matching for observational studies. R News 7, 18–24 (2007)Google Scholar
  17. Haviland, A.M., Nagin, D.S., Rosenbaum, P.R.: Combining propensity score matching and group-based trajectory analysis in an observational study. Psychol Methods 12, 247–267 (2007)CrossRefGoogle Scholar
  18. Haviland, A.M., Nagin, D.S., Rosenbaum, P.R., Tremblay, R.: Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Dev Psychol 44, 422–436 (2008)CrossRefGoogle Scholar
  19. Heller, R., Manduchi, E., Small, D.: Matching methods for observational microarray studies. Bioinformatics 25, 904–909 (2009)CrossRefGoogle Scholar
  20. Ho, D., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal 15, 199–236 (2007)CrossRefGoogle Scholar
  21. Karmanov, V.G.: Mathematical Programming. Moscow: Mir.Google Scholar
  22. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res Logist Quart 2, 83–97 (1955)CrossRefMathSciNetGoogle Scholar
  23. Lehmann, E.L.: Nonparametrics. San Francisco: Holden Day (1975)MATHGoogle Scholar
  24. Mahalanobis, P.C.: On the generalized distance in statistics. Proc Natl Inst Sci India 12, 49–55 (1936)Google Scholar
  25. Maindonald, J., Braun, J.: Data Analysis and Graphics Using R. New York: Cambridge University Press (2005)Google Scholar
  26. Ming, K., Rosenbaum, P. R . Substantial gains in bias reduction from matching with a variable number of controls. Biometrics 56, 118–124 (2000)MATHCrossRefGoogle Scholar
  27. Ming, K., Rosenbaum, P.R.: A note on optimal matching with variable controls using the assignment algorithm. J Comp Graph Statist 10, 455–463 (2001)CrossRefMathSciNetGoogle Scholar
  28. R Development Core Team.: R: A Language and Environment for Statistical Computing. Vienna: R Foundation, (2007)
  29. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall (1982)MATHGoogle Scholar
  30. Rosenbaum, P.R., Rubin, D.B. : The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983)MATHCrossRefMathSciNetGoogle Scholar
  31. Rosenbaum, P.R.: Conditional permutation tests and the propensity score in observational studies. J Am Statist Assoc 79, 565–574 (1984)CrossRefMathSciNetGoogle Scholar
  32. Rosenbaum, P.R., Rubin, D.B. : Constructing a control group by multivariate matched sampling methods that incorporate the propensity score. Am Statistician 39, 33–38 (1985)CrossRefGoogle Scholar
  33. Rosenbaum, P.R.: Model-based direct adjustment. J Am Statist Assoc 82, 387–394 (1987)MATHCrossRefGoogle Scholar
  34. Rosenbaum, P.R.: Optimal matching in observational studies. J Am Statist Assoc 84, 1024–1032 (1989)CrossRefGoogle Scholar
  35. Rosenbaum, P.R.: A characterization of optimal designs for observational studies. J Roy Statist Soc B 53, 597–610 (1991)MATHMathSciNetGoogle Scholar
  36. Rosenbaum, P.R.: Covariance adjustment in randomized experiments and observational studies (with Discussion). Statist Sci 17, 286–327 (2002)MATHCrossRefMathSciNetGoogle Scholar
  37. Rosenbaum, P.R.: Observational Studies. New York: Springer (2002)MATHGoogle Scholar
  38. Rubin, D.B. : Matching to remove bias in observational studies. Biometrics 29, 159–183 (1973)CrossRefGoogle Scholar
  39. Rubin D.B.: Bias reduction using Mahalanobis metric matching. Biometrics 36, 293–298 (1980)MATHCrossRefGoogle Scholar
  40. Sekhon, J.S.: Opiates for the matches: Matching methods for causal inference. Annu Rev Pol Sci 12, 487–508 (2009)CrossRefGoogle Scholar
  41. Silber, J.H., Rosenbaum, P.R., Trudeau, M.E., Even-Shoshan, O., Chen, W., Zhang, X., Mosher, R.E. : Multivariate matching and bias reduction in the surgical outcomes study. Medical Care 39, 1048–1064 (2001)CrossRefGoogle Scholar
  42. Silber, J.H., Rosenbaum, P.R., Trudeau, M.E., Chen, W., Zhang, X., Lorch, S.L., Rapaport-Kelz, R., Mosher, R.E, Even-Shoshan, O.: Preoperative antibiotics and mortality in the elderly, Ann Surg 242, 107–114 (2005)CrossRefGoogle Scholar
  43. Silber, J.H., Rosenbaum, P.R., Polsky, D., Ross, R.N., Even-Shoshan, O., Schwartz, S., Armstrong, K.A., Randall, T.C.: Does ovarian cancer treatment and survival differ by the specialty providing chemotherapy? J Clin Oncol 25, 1169–1175 (2007)CrossRefGoogle Scholar
  44. Silber, J.H., Lorch, S.L., Rosenbaum, P.R., Medoff-Cooper, B., Bakewell-Sachs, S., Millman, A., Mi, L., Even-Shoshan, O., Escobar, G.E. : Additional maturity at discharge and subsequent health care costs. Health Serv Res 44, 444–463 (2009)CrossRefGoogle Scholar
  45. Smith, H.L. : Matching with multiple controls to estimate treatment effects in observational studies. Sociol Method 27, 325–353 (1997)CrossRefGoogle Scholar
  46. Stuart, E.A., Green, K.M. : Using full matching to estimate causal effects in nonexperimental studies: Examining the relationship between adolescent marijuana use and adult outcomes. Dev Psychol 44, 395–406 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Statistics Department Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations