Advertisement

Two Simple Models for Observational Studies

Chapter
Part of the Springer Series in Statistics book series (SSS)

Abstract

Observational studies differ from experiments in that randomization is not used to assign treatments. How were treatments assigned? This chapter introduces two simple models for treatment assignment in observational studies. The first model is useful but naïve: it says that people who look comparable are comparable. The second model speaks to a central concern in observational studies: people who look comparable in the observed data may not actually be comparable; they may differ in ways we did not observe.

Keywords

Propensity Score Treatment Assignment Statist Assoc Ideal Match Propensity Score Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadie, A. : Semiparametric difference-in-differences estimators. Rev Econ Stud 72, 1–19 (2005)MATHMathSciNetCrossRefGoogle Scholar
  2. Angrist, J.D., Krueger, A.B.: Empirical strategies in labor economics. In: Ashenfelter, O., Card, D. (eds.) Handbook of Labor Economics, Volume 3, pp. 1277–1366. New York: Elsevier (1999)Google Scholar
  3. Angrist, J. D., Lavy, V.: Using Maimonides’ rule to estimate the effect of class size on scholastic achievement. Q J Econ 114, 533–575 (1999)CrossRefGoogle Scholar
  4. Angrist, J., Hahn, J. : When to control for covariates? Panel asymptotics for estimates of treatment effects. Rev Econ Statist 86, 58–72 (2004)CrossRefGoogle Scholar
  5. Athey, S., Imbens, G.W.: Identification and inference in nonlinear difference-in-differences models. Econometrica 74, 431–497 (2006)MATHMathSciNetCrossRefGoogle Scholar
  6. Bertrand, M., Duflo, E., Mullainathan, S.: How much should we trust difference-in-differences estimates? Q J Econ 119, 249–275 (2004)MATHCrossRefGoogle Scholar
  7. Besley, T., Case, A.: Unnatural experiments? Estimating the incidence of endogenous policies. Econ J 110, 672–694 (2000)CrossRefGoogle Scholar
  8. Bross, I.D.J.: Statistical criticism. Cancer 13, 394–400 (1961)CrossRefGoogle Scholar
  9. Bross, I.D.J.: Spurious effects from an extraneous variable. J Chron Dis 19, 637–647 (1966)CrossRefGoogle Scholar
  10. Campbell, D.T.: Factors relevant to the validity of experiments in social settings. Psych Bull 54, 297–312 (1957)CrossRefGoogle Scholar
  11. Campbell, D.T.: Reforms as experiments. Am Psychol 409–429 (1969)Google Scholar
  12. Campbell, D.T.: Methodology and Epistemology for Social Science: Selected Papers. Chicago: University of Chicago Press (1988)Google Scholar
  13. Copas, J.B., Li, H.G.: Inference for non-random samples. J Roy Statist Soc B 59, 55–77 (1997)MATHMathSciNetCrossRefGoogle Scholar
  14. Copas, J.B., Eguchi, S.: Local sensitivity approximations for selectivity bias. J Roy Statist Soc B 63, 871–896 (2001)MATHMathSciNetCrossRefGoogle Scholar
  15. Cornfield, J., Haenszel, W., Hammond, E., Lilienfeld, A., Shimkin, M., Wynder, E. : Smoking and lung cancer: Recent evidence and a discussion of some questions. J Natl Cancer Instit 22, 173–203 (1959)Google Scholar
  16. D’Agostino, R.B.: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statist Med 17, 2265–2281 (1998)CrossRefGoogle Scholar
  17. Dawid, A.P.: Conditional independence in statistical theory (with Discussion). J Roy Statist Soc B 41, 1–31 (1979)MATHMathSciNetGoogle Scholar
  18. Dehejia, R.H., Wahba, S.: Propensity score-matching methods for nonexperimental causal studies. Rev Econ Statist 84, 151–161 (2002)CrossRefGoogle Scholar
  19. Diprete, T.A., Gangl, M.: Assessing bias in the estimation of causal effects. Sociolog Method 34, 271–310 (2004)CrossRefGoogle Scholar
  20. Dynarski, S.M.: Does aid matter? Measuring the effect of student aid on college attendance and completion. Am Econ Rev 93, 279–288 (2003)CrossRefGoogle Scholar
  21. Fenech, M., Changb, W.P., Kirsch-Voldersc, M., Holland, N., Bonassie, S., Zeiger, E.: HUMN project: Detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534, 65–75 (2003)Google Scholar
  22. Foster, E.M., Bickman, L.: Old wine in new skins: The sensitivity of established findings to new methods. Eval Rev 3, 281–306 (2009)CrossRefGoogle Scholar
  23. Frangakis, C.E., Rubin, D.B.: Principal stratification in causal inference. Biometrics 58, 21–29 (2002)MathSciNetCrossRefGoogle Scholar
  24. Gastwirth, J.L.: Methods for assessing the sensitivity of comparisons in Title VII cases to omitted variables. Jurimetrics J 33, 19–34 (1992)Google Scholar
  25. Gastwirth, J.L., Krieger, A.M., Rosenbaum, P.R.: Dual and simultaneous sensitivity analysis for matched pairs. Biometrika 5, 907–920 (1998)CrossRefGoogle Scholar
  26. Gastwirth, J.L., Krieger, A.M., Rosenbaum, P.R.: Asymptotic separability in sensitivity analysis. J Roy Statist Soc B 2, 545–555 (2000)MathSciNetCrossRefGoogle Scholar
  27. Greevy, R., Lu, B., Silber, J.H., Rosenbaum, P.R.: Optimal matching before randomization. Biostatistics 5, 263–275 (2004)MATHCrossRefGoogle Scholar
  28. Greenland, S.: Basic methods of sensitivity analysis. Int J Epidemiol 25, 1107–1116 (1996)CrossRefGoogle Scholar
  29. Gross, D.B., Souleles, N.S.: Do liquidity constraints and interest rates matter for consumer behavior? Evidence from credit card data. Q J Econ 117, 149–185 (2002)MATHCrossRefGoogle Scholar
  30. Hahn, J.Y.: On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66, 315–331 (1998)MATHMathSciNetCrossRefGoogle Scholar
  31. Hamermesh, D.S.: The craft of labormetrics. Indust Labor Relat Rev 53, 363–380 (2000)CrossRefGoogle Scholar
  32. Hansen, B.B.: The prognostic analogue of the propensity score. Biometrika 95, 481–488 (2008)MATHCrossRefMathSciNetGoogle Scholar
  33. Haviland, A., Nagin, D.S., Rosenbaum, P.R.: Combining propensity score matching and group-based trajectory analysis in an observational study. Psych Methods 2, 247–267 (2007)CrossRefGoogle Scholar
  34. Haviland, A.M., Nagin, D.S., Rosenbaum, P.R., Tremblay, R.E.: Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Devel Psych 44, 422–436 (2008)CrossRefGoogle Scholar
  35. Hirano, K., Imbens, G.W., Ridder, G.: Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71, 1161–1189 (2003)MATHMathSciNetCrossRefGoogle Scholar
  36. Hill, A.B.: The environment and disease: Association or causation? Proc Roy Soc Med 58, 295–300 (1965)Google Scholar
  37. Hill, J.L., Waldfogel, J., Brooks-Gunn, J., Han, W.J.: Maternal employment and child development: A fresh look using newer methods. Devel Psychol 41, 833–850 (2005)CrossRefGoogle Scholar
  38. Ho, D.E., Imai, K., King, G., Stuart, E.A.: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal 15, 199–236 (2007)CrossRefGoogle Scholar
  39. International Agency for Research on Cancer: IARC Monographs on the Valuation of Carcinogenic Risks of Chemicals to Humans: Chromium, Nickel and Welding, Volume 49, pp. 447–525. Lyon: IARC (1990)Google Scholar
  40. Imai, K.: Statistical analysis of randomized experiments with non-ignorable missing binary outcomes: an application to a voting experiment. Appl Statist 58, 83–104 (2009)Google Scholar
  41. Imbens, G.W.: The role of the propensity score in estimating dose response functions. Biometrika 87, 706–710 (2000)MATHMathSciNetCrossRefGoogle Scholar
  42. Imbens, G.W.: Sensitivity to exogeneity assumptions in program evaluation. Am Econ Rev 93, 126–132 (2003)CrossRefGoogle Scholar
  43. Imbens, G.W. : Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Statist 86, 4–29 (2004)CrossRefGoogle Scholar
  44. Imbens, G.W., Wooldridge, J.M.: Recent developments in the econometrics of program evaluation. J Econ Lit 47, 5–86 (2009)CrossRefGoogle Scholar
  45. Joffe, M.M., Ten Have, T.R., Feldman, H.I., Kimmel, S.E.: Model selection, confounder control, and marginal structural models: Review and new applications. Am Statistician 58, 272–279 (2004)MathSciNetCrossRefGoogle Scholar
  46. Johnson, B.A., Tsiatis, A.A.: Estimating mean response as a function of treatment duration in an observational study, where duration may be informatively censored. Biometrics 60, 315–323 (2004)MATHMathSciNetCrossRefGoogle Scholar
  47. Katan, M.B.: Commentary: Mendelian randomization, 18 years on. Int J Epidemiol 33, 10–11 (2004)CrossRefGoogle Scholar
  48. Keele, L.J.: Rbounds: An R Package for Sensitivity Analysis with Matched Data. http://www.polisci.ohio-state.edu/faculty/lkeele/rbounds.html
  49. Lee, M.J., Lee, S.J.: Sensitivity analysis of job-training effects on reemployment for Korean women. Empiric Econ 36, 81–107 (2009)CrossRefGoogle Scholar
  50. Lin, D.Y., Psaty, B.M., Kronmal, R.A.: Assessing sensitivity of regression to unmeasured confounders in observational studies. Biometrics 54, 948–963 (1998)MATHCrossRefGoogle Scholar
  51. Lu, B., Rosenbaum, P.R.: Optimal matching with two control groups. J Comput Graph Statist 13, 422–434 (2004)MathSciNetCrossRefGoogle Scholar
  52. Manski, C.: Nonparametric bounds on treatment effects. Am Econ Rev 80, 319–323 (1990)Google Scholar
  53. Manski, C.F. : Identification Problems in the Social Sciences. Cambridge: Harvard University Press (1995)Google Scholar
  54. Manski, C.F., Nagin, D.S.: Bounding disagreements about treatment effects: a case study of sentencing and recidivism. Sociol Method 8, 99–137 (1998)CrossRefGoogle Scholar
  55. Marcus, S.M.: Using omitted variable bias to assess uncertainty in the estimation of an AIDS education treatment effect. J Educ Behav Statist 22, 193–201 (1997)Google Scholar
  56. McCaffrey, D.F., Ridgeway, G., Morral, A.R.: Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psych Meth 9, 403–425 (2004)CrossRefGoogle Scholar
  57. McKillip, J.: Research without control groups: A control construct design. In: Methodological Issues in Applied Social Psychology, F. B. Bryant, et al., eds., New York: Plenum Press, pp. 159–175 (1992)Google Scholar
  58. Meyer, B.D.: Natural and quasi-experiments in economics. J Business Econ Statist 13, 151–161 (1995)CrossRefGoogle Scholar
  59. Mitra, N. Heitjan, D.F.: Sensitivity of the hazard ratio to nonignorable treatment assignment in an observational study. Statist Med 26, 1398–1414 (2007)MathSciNetCrossRefGoogle Scholar
  60. Normand, S-L., Landrum, M.B., Guadagnoli, E., Ayanian, J.Z., Ryan, T.J., Cleary, P.D., McNeil, B.J.: Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J Clin Epidemiol 54, 387–398 (2001)CrossRefGoogle Scholar
  61. Normand, S-L., Sykora, K., Li, P., Mamdani, M., Rochon, P.A., Anderson, G.M.: Readers guide to critical appraisal of cohort studies: 3. Analytical strategies to reduce confounding. Brit Med J 330, 1021–1023 (2005)CrossRefGoogle Scholar
  62. Pagano, M., Tritchler, D.: On obtaining permutation distributions in polynomial time. J Am Statist Assoc 78, 435–440 (1983)MATHMathSciNetCrossRefGoogle Scholar
  63. Reynolds, K.D., West, S.G.: A multiplist strategy for strengthening nonequivalent control group designs. Eval Rev 11, 691–714 (1987)CrossRefGoogle Scholar
  64. Robins, J.M., Mark, S.D., Newey, W.K.: Estimating exposure effects by modeling the expectation of exposure conditional on confounders. Biometrics 48, 479–495 (1992)MATHMathSciNetCrossRefGoogle Scholar
  65. Robins, J.M., Ritov, Y.: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statist Med 16, 285–319 (1997)CrossRefGoogle Scholar
  66. Robins, J.M., Rotnitzky, A., Scharfstein, D.: Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Statistical Models in Epidemiology, E. Halloran and D. Berry, eds., pp. 1–94. New York: Springer (1999)Google Scholar
  67. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983)MATHMathSciNetCrossRefGoogle Scholar
  68. Rosenbaum, P. R., Rubin, D.B.: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J Roy Statist Soc B 45, 212–218 (1983)Google Scholar
  69. Rosenbaum, P.R.: Conditional permutation tests and the propensity score in observational studies. J Am Statist Assoc 79, 565–574 (1984)MathSciNetCrossRefGoogle Scholar
  70. Rosenbaum, P.R., Rubin, D.B.: Reducing bias in observational studies using subclassification on the propensity score. J Am Statist Assoc 79, 516–524 (1984)CrossRefGoogle Scholar
  71. Rosenbaum, P.R., Rubin, D.B. : Constructing a control group by multivariate matched sampling methods that incorporate the propensity score. Am Statistician 39, 33–38 (1985)CrossRefGoogle Scholar
  72. Rosenbaum, P. R., Rubin, D.B.: The bias due to incomplete matching. Biometrics 41, 106–116 (1985)MathSciNetCrossRefGoogle Scholar
  73. Rosenbaum, P.R.: Dropping out of high school in the United States: An observational study. J Educ Statist 1, 207–224 (1986)CrossRefGoogle Scholar
  74. Rosenbaum, P.R.: Sensitivity analysis for certain permutation inferences in matched observational studies. Biometrika 74, 13–26 (1987)MATHMathSciNetCrossRefGoogle Scholar
  75. Rosenbaum, P.R.: The role of a second control group in an observational study (with Discussion). Statist Sci 2, 292–316 (1987)CrossRefGoogle Scholar
  76. Rosenbaum, P.R.: Model-based direct adjustment. J Am Statist Assoc 2, 387–394 (1987)CrossRefGoogle Scholar
  77. Rosenbaum, P.R.: The role of known effects in observational studies. Biometrics 45, 557–569 (1989)MATHMathSciNetCrossRefGoogle Scholar
  78. Rosenbaum, P.R.: On permutation tests for hidden biases in observational studies. Ann Statist 17, 643–653 (1989)MATHMathSciNetCrossRefGoogle Scholar
  79. Rosenbaum, P.R., Krieger, A.M.: Sensitivity analysis for two-sample permutation inferences in observational studies. J Am Statist Assoc 5, 493–498 (1990)CrossRefGoogle Scholar
  80. Rosenbaum, P.R.: Hodges-Lehmann point estimates in observational studies. J Am Statist Assoc 88, 1250–1253 (1993)MATHMathSciNetCrossRefGoogle Scholar
  81. Rosenbaum, P.R.: Quantiles in nonrandom samples and observational studies. J Am Statist Assoc 90, 1424–1431 (1995)MATHMathSciNetCrossRefGoogle Scholar
  82. Rosenbaum, P.R.: Signed rank statistics for coherent predictions. Biometrics 53, 556–566 (1997)MATHCrossRefGoogle Scholar
  83. Rosenbaum, P.R.: Choice as an alternative to control in observational studies (with Discussion). Statist Sci 14, 259–304 (1999)MATHCrossRefGoogle Scholar
  84. Rosenbaum, P.R.: Stability in the absence of treatment. J Am Statist Assoc 96, 210–219 (2001)MATHMathSciNetCrossRefGoogle Scholar
  85. Rosenbaum, P.R.: Observational Studies (2nd ed.). New York: Springer (2002)MATHGoogle Scholar
  86. Rosenbaum, P.R.: Covariance adjustment in randomized experiments and observational studies (with Discussion). Statist Sci 17, 286–327 (2002)MATHMathSciNetCrossRefGoogle Scholar
  87. Rosenbaum, P.R.: Design sensitivity in observational studies. Biometrika 91, 153–164 (2004)MATHMathSciNetCrossRefGoogle Scholar
  88. Rosenbaum, P. R.: Heterogeneity and causality: Unit heterogeneity and design sensitivity in observational studies. Am Statistician 59, 147–152 (2005)MathSciNetCrossRefGoogle Scholar
  89. Rosenbaum, P.R.: Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007)MATHMathSciNetCrossRefGoogle Scholar
  90. Rosenbaum, P.R., Silber, J.H.: Sensitivity analysis for equivalence and difference in an observational study of neonatal intensive care units. J Am Statist Assoc 104, 501–511 (2009)CrossRefGoogle Scholar
  91. Rosenbaum, P.R., Silber, J.H.: Amplification of sensitivity analysis in observational studies. J Am Statist Assoc, to appear.Google Scholar
  92. Rosenzweig, M.R., Wolpin, K.I.: Natural ‘natural experiments’ in economics. J Econ Lit 38, 827–874 (2000)Google Scholar
  93. Rotnitzky, A., Robins, J.M.: Semiparametric regression estimation in the presence of dependent censoring. Biometrika 82, 805–820 (1995)MATHMathSciNetCrossRefGoogle Scholar
  94. Rubin, D.B., Thomas, N.: Characterizing the effect of matching using linear propensity score methods with normal distribution. Biometrika 79, 797–809 (1992)MATHMathSciNetCrossRefGoogle Scholar
  95. Rubin, D.B., Thomas, N.: Combining propensity score matching with additional adjustments for prognostic covariates. J Am Statist Assoc 95, 573–585 (2000)CrossRefGoogle Scholar
  96. Rutter, M.: Identifying the Environmental Causes of Disease: How Do We Decide What to Believe and When to Take Action? London: Academy of Medical Sciences (2007)Google Scholar
  97. Shadish, W.R., Cook, T.D., Campbell, D. T.: Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Houghton-Mifflin (2002)Google Scholar
  98. Shadish, W. R., Cook, T. D.: The renaissance of field experimentation in evaluating interventions. Annu Rev Psychol 60, 607–629 (2009)CrossRefGoogle Scholar
  99. Shepherd, B.E., Gilbert, P.B., Mehrotra, D.V.: Eliciting a counterfactual sensitivity parameter. Am Statistician 61, 56–63 (2007)MathSciNetCrossRefGoogle Scholar
  100. Silber, J.H., Rosenbaum, P. R., Trudeau, M.E., Chen, W., Zhang, X., Lorch, S.L., Rapaport-Kelz, R., Mosher, R.E., Even-Shoshan, O. : Preoperative antibiotics and mortality in the elderly. Ann Surg 242, 107–114 (2005)CrossRefGoogle Scholar
  101. Small, D., Rosenbaum, P.R.: War and wages: The strength of instrumental variables and their sensitivity to unobserved biases. J Am Statist Assoc 103, 924–933 (2008)MathSciNetCrossRefGoogle Scholar
  102. Spielman, R.S., Ewens, W.J.: A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test. Am J Hum Genet 62, 450–458 (1998)CrossRefGoogle Scholar
  103. Stolley, P.D.: When genius errs –- R.A. Fisher and the lung cancer controversy. Am J Epidemiol 133, 416–425 (1991)Google Scholar
  104. Stone, R.: The assumptions on which causal inferences rest. J Roy Statist Soc B 55, 455–466 (1993)MATHGoogle Scholar
  105. Trochim, W.M.K.: Pattern matching, validity and conceptualization in program evaluation. Eval Rev 9, 575–604 (1985)CrossRefGoogle Scholar
  106. Vandenbroucke, J.P.: When are observational studies as credible as randomized trials? Lancet 363, 1728–1731 (2004)CrossRefGoogle Scholar
  107. VanderWeele, T.: The use of propensity score methods in psychiatric research. Int J Methods Psychol Res 15, 95–103 (2006)CrossRefGoogle Scholar
  108. Volpp, K.G., Rosen, A.K., Rosenbaum, P.R., Romano, P.S., Even-Shoshan, O., Wang, Y., Bellini, L., Behringer, T., Silber, J.H.: Mortality among hospitalized Medicare beneficiaries in the first 2 years following ACGME resident duty hour reform. J Am Med Assoc 8, 975–983 (2007)CrossRefGoogle Scholar
  109. Wang, L.S., Krieger, A.M.: Causal conclusions are most sensitive to unobserved binary covariates. Statist Med 25, 2257–2271 (2006)MathSciNetCrossRefGoogle Scholar
  110. Weiss, N.S.: Can the “specificity” of an association be rehabilitated as a basis for supporting a causal hypothesis? Epidemiology 13, 6–8 (2002)CrossRefGoogle Scholar
  111. Werfel, U., Langen, V., Eickhoff, I., Schoonbrood, J., Vahrenholz, C., Brauksiepe, A., Popp, W., Norpoth, K.: Elevated DNA single-strand breakage frequencies in lymphocytes of welders. Carcinogenesis 19, 413–418 (1998)CrossRefGoogle Scholar
  112. Wintemute, G.J., Wright, M.A., Drake, C.M., Beaumont, J.J.: Subsequent criminal activity among violent misdemeanants who seek to purchase handguns: risk factors and effectiveness of denying handgun purchase. J Am Med Assoc 285, 1019–1026 (2001)CrossRefGoogle Scholar
  113. Yu, B.B., Gastwirth, J.L.: Sensitivity analysis for trend tests: Application to the risk of radiation exposure. Biostatistics 6, 201–209 (2005)MATHCrossRefGoogle Scholar
  114. Zanutto, E., Lu, B., Hornik, R.: Using propensity score subclassification for multiple treatment doses to evaluate a national antidrug media campaign. J Educ Behav Statist 30, 59–73 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Statistics Department Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations