Dilemmas and Craftsmanship

  • Paul R. Rosenbaum
Part of the Springer Series in Statistics book series (SSS)


This introductory chapter mentions some of the issues that arise in observational studies and describes a few well designed studies. Section 1.7 outlines the book, describes its structure, and suggests alternative ways to read it.


Matched Pair Seat Belt Design Sensitivity Unaffected Sibling College Attendance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, I.: Combinatories of Finite Sets. New York: Oxford University Press (1987)Google Scholar
  2. Angrist, J.D., Krueger, A.B.: Empirical strategies in labor economics. In: Ashenfelter, O., Card, D. (eds.) Handbook of Labor Economics, Volume 3, pp. 1277–1366. New York: Elsevier (1999)Google Scholar
  3. Angrist, J.D., Lavy, V.: Using Maimonides’ rule to estimate the effect of class size on scholastic achievement. Q J Econ 114, 533–575 (1999)CrossRefGoogle Scholar
  4. Besley, T., Case, A.: Unnatural experiments? Estimating the incidence of endogenous policies. Econ J 110, 672–694 (2000)CrossRefGoogle Scholar
  5. Boehnke, M., Langefeld, C.D.: Genetic association mapping based on discordant sib pairs: The discordant alleles test. Am J Hum Genet 62, 950–961 (1998)CrossRefGoogle Scholar
  6. Bollobás, B.: Combinatorics. New York: Cambridge University Press (1986)MATHGoogle Scholar
  7. Campbell, D.T. : Factors relevant to the validity of experiments in social settings. Psychol Bull 54, 297–312 (1957)CrossRefGoogle Scholar
  8. Campbell, D.T.: Methodology and Epistemology for Social Science: Selected Papers. Chicago: University of Chicago Press (1988)Google Scholar
  9. Cochran, W.G.: The planning of observational studies of human populations (with Discussion). J Roy Statist Soc A 128, 234–265 (1965)CrossRefGoogle Scholar
  10. Cook, T.D., Shadish, W.R.: Social experiments: Some developments over the past fifteen years. Annu Rev Psychol 45, 545–580 (1994)CrossRefGoogle Scholar
  11. Cornfield, J., Haenszel, W., Hammond, E., Lilienfeld, A., Shimkin, M., Wynder, E. : Smoking and lung cancer: Recent evidence and a discussion of some questions. J Natl Cancer Inst 22, 173–203 (1959)Google Scholar
  12. Curtis, D.: Use of siblings as controls in case-control association studies. Ann Hum Genet 61, 319–333 (1997)CrossRefGoogle Scholar
  13. Dynarski, S.M.: Does aid matter? Measuring the effect of student aid on college attendance and completion. Am Econ Rev 93, 279–288 (2003)CrossRefGoogle Scholar
  14. Evans, L.: The effectiveness of safety belts in preventing fatalities Accid Anal Prev 18, 229–241 (1986)CrossRefGoogle Scholar
  15. Fisher, R.A.: Design of Experiments. Edinburgh: Oliver and Boyd (1935)Google Scholar
  16. Gastwirth, J.L., Krieger, A.M., Rosenbaum, P.R.: Asymptotic separability in sensitivity analysis. J Roy Statist Soc B 62, 545–555 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. Greenstone, M., Gayer, T.: Quasi-experimental and experimental approaches to environmental economics. J Environ Econ Manag 57, 21–44 (2009)MATHCrossRefGoogle Scholar
  18. Greevy, R., Silber, J.H., Cnaan, A., Rosenbaum, P.R.: Randomization inference with imperfect compliance in the ACE-inhibitor after anthracycline randomized trial. J Am Statist Assoc 99, 7–15 (2004)MATHMathSciNetGoogle Scholar
  19. Hamermesh, D.S.: The craft of labormetrics. Indust Labor Relat Rev 53, 363–380 (2000)CrossRefGoogle Scholar
  20. Heart Protection Study Collaborative Group.: MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 360, 23–33 (2002)Google Scholar
  21. Heckman, J.J.: Micro data, heterogeneity, and the evaluation of public policy: Nobel lecture. J Polit Econ 109, 673–748 (2001)CrossRefGoogle Scholar
  22. Hernán, M.A., Alonso, A., Logan, R., Grodstein, F., Michels, K.B., Willett, W.C., Manson, J.E., Robins, J.M.: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with Discussion). Epidemiology 19, 766–793 (2008)CrossRefGoogle Scholar
  23. Hill, A.B.: The environment and disease: Association or causation? Proc Roy Soc Med 58, 295–300 (1965)Google Scholar
  24. Holland, P.W.: Statistics and causal inference. J Am Statist Assoc 81, 945–960 (1986)MATHCrossRefMathSciNetGoogle Scholar
  25. Holley, R.: Remarks on the FKG inequalities. Comm Math Phys 36, 227–231 (1974)CrossRefMathSciNetGoogle Scholar
  26. Imbens, G.W., Wooldridge, J.M.: Recent developments in the econometrics of program evaluation. J Econ Lit 47, 5–86 (2009)CrossRefGoogle Scholar
  27. Kant, I.: What is enlightenment? In: I. Kant, Toward Perpetual Peace and Other Writings. New Haven, CT: Yale University Press (1785, 2006)Google Scholar
  28. Katan, M.B.: Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1, 507–508 (1986) Reprinted: Int J Epidemiol 33, 9 (2004)Google Scholar
  29. Katan, M.B.: Commentary: Mendelian randomization, 18 years on. Int J Epidemiol 33, 10–11 (2004)CrossRefGoogle Scholar
  30. Khaw, K.T., Bingham, S., Welch, A., Luben, R., Wareham, N., Oakes, S., Day, N.: Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study. Lancet 357, 657–663 (2001)CrossRefGoogle Scholar
  31. Laird, N.M., Blacker, D., Wilcox, M.: The sib transmission/disequilibrium test is a Mantel-Haenszel test. Am J Hum Genet 63, 1915 (1998)CrossRefGoogle Scholar
  32. Lawlor, D.A., Smith, G.D., Bruckdorfer, K.R., Kundo, D., Ebrahim, S.: Those confounded vitamins: What can we learn from the differences between observational versus randomized trial evidence? Lancet 363, 1724–1727 (2004)CrossRefGoogle Scholar
  33. Meyer, B.D.: Natural and quasi-experiments in economics. J Business Econ Statist 13, 151–161 (1995)CrossRefGoogle Scholar
  34. Rosenbaum, P.R.: The consequences of adjustment for a concomitant variable that has been affected by the treatment. J Roy Statist Soc A 147, 656–666 (1984)CrossRefGoogle Scholar
  35. Rosenbaum, P.R.: On permutation tests for hidden biases in observational studies: An application of Holley’s inequality to the Savage lattice. Ann Statist 17, 643–653 (1989)MATHCrossRefMathSciNetGoogle Scholar
  36. Rosenbaum, P.R.: Quantiles in nonrandom samples and observational studies. J Am Statist Assoc 90, 1424–1431 (1995)MATHCrossRefMathSciNetGoogle Scholar
  37. Rosenbaum, P.R.: Stability in the absence of treatment. J Am Statist Assoc 96, 210–219 (2001)MATHCrossRefMathSciNetGoogle Scholar
  38. Rosenbaum, P.R.: Observational Studies (2nd ed.). New York: Springer (2002)MATHGoogle Scholar
  39. Rosenbaum, P.R.: Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. Biometrics 63, 456–464 (2007)MATHCrossRefMathSciNetGoogle Scholar
  40. Rosenzweig, M.R., Wolpin, K.I.: Natural ‘natural experiments’ in economics. J Econ Lit 38, 827–874 (2000)Google Scholar
  41. Rubin, D.B. : Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol 66, 688–701 (1974)CrossRefGoogle Scholar
  42. Rubin, D.B. : The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statist Med 26, 20–36 (2007)CrossRefGoogle Scholar
  43. Rutter, M.: Identifying the Environmental Causes of Disease: How Do We Decide What to Believe and When to Take Action? London: Academy of Medical Sciences (2007)Google Scholar
  44. Saunders, A.M., Strittmatter, W.J., Schmechel, D., et al.: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43, 1467–1472 (1993)Google Scholar
  45. Savage, I.R.: Contributions to the theory of rank order statistics: Applications of lattice theory. Rev Int Statist Inst 32, 52–63 (1964)MATHCrossRefMathSciNetGoogle Scholar
  46. Sekhon, J.S.: Opiates for the matches: Matching methods for causal inference. Annu Rev Pol Sci 12, 487–508 (2009)CrossRefGoogle Scholar
  47. Shadish, W. R., Cook, T. D., Campbell, D.T.: Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Houghton-Mifflin (2002)Google Scholar
  48. Shadish, W. R., Cook, T. D.: The renaissance of field experimentation in evaluating interventions. Annu Rev Psychol 60, 607–629 (2009)CrossRefGoogle Scholar
  49. Spielman, R.S., McGinnis, R.E., Ewens, W.J.: Transmission test for linkage disequilibrium. Am J Hum Genet 52, 506–516 (1993)Google Scholar
  50. Spielman, R.S., Ewens, W.J.: A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test. Am J Hum Genet 62, 450–458 (1998)CrossRefGoogle Scholar
  51. Strachan, T., Read, A.P.: Human Molecular Genetics. New York: Garland (2004)Google Scholar
  52. Susser, M.: Epidemiology, Health and Society: Selected Papers. New York: Oxford University Press (1987)Google Scholar
  53. Vandenbroucke, J.P. : When are observational studies as credible as randomized trials? Lancet 363, 1728–1731 (2004)CrossRefGoogle Scholar
  54. West, S.G., Duan, N., Pequegnat, W., Gaist, P., Des Jarlais, D.C., Holtgrave, D., Szapocznik, J., Fishbein, M., Rapkin, B., Clatts, M., Mullen, P.D. : Alternatives to the randomized controlled trial. Am J Public Health 98, 1359–1366 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Statistics Department Wharton SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations