Cognitive Neuroscience Approaches to Individual Differences in Working Memory and Executive Control: Conceptual and Methodological Issues

  • Tal Yarkoni
  • Todd S. Braver
Part of the The Springer Series on Human Exceptionality book series (SSHE)


Analyses of individual differences play an important role in cognitive neuroscience studies of working memory and executive control (WM/EC). Many studies examining the neural substrates of working memory have relied upon correlations between brain activity and either task performance measures or trait measures of cognitive ability. However, there are important conceptual and methodological issues that surround the use of individual difference measures to explain brain activation patterns. These issues make the interpretation of correlations a more complex endeavor than is typically appreciated.


fMRI Study Blood Oxygen Level Dependent Proactive Interference Posterior Parietal Cortex Fluid Intelligence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armitage, P., McPherson, C. K., & Rowe, B. C. (1969). Repeated significance tests on accumulating data. Journal of the Royal Statistical Society, Series A, 132, 235–244.Google Scholar
  2. Aron, A. R., Gluck, M. A., & Poldrack, R. A. (2006). Long-term test–retest reliability of functional MRI in a classification learning task. NeuroImage, 29, 1000–1006.PubMedGoogle Scholar
  3. Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907–918.PubMedGoogle Scholar
  4. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  5. Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.Google Scholar
  6. Bradley, M. T., Smith, D., & Stoica, G. (2002). A Monte-Carlo estimation of effect size distortion due to significance testing. Perceptual and Motor Skills, 95(3), 837–842.PubMedGoogle Scholar
  7. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.PubMedGoogle Scholar
  8. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory. Oxford: Oxford University Press.Google Scholar
  9. Buchsbaum, B. R., Greer, S., Chang, W. L., & Berman, K. F. (2005). Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Human Brain Mapping, 25(1), 35–45.PubMedGoogle Scholar
  10. Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(10), 2074.PubMedGoogle Scholar
  11. Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9(16), 3735–3739.PubMedGoogle Scholar
  12. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.PubMedGoogle Scholar
  13. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.PubMedGoogle Scholar
  14. Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H., & Gabrieli, J. D. (2002). Amygdala response to happy faces as a function of extraversion. Science, 296(5576), 2191.PubMedGoogle Scholar
  15. Canli, T., Zhao, Z., Desmond, J. E., Kang, E., Gross, J., & Gabrieli, J. D. (2001). An fMRI study of personality influences on brain reactivity to emotional stimuli. Behavioral Neuroscience, 115(1), 33–42.PubMedGoogle Scholar
  16. Caplan, J. B., McIntosh, A. R., & De Rosa, E. (2007). Two distinct functional networks for successful resolution of proactive interference. Cerebral Cortex, 17(7), 1650.PubMedGoogle Scholar
  17. Chen, P. Y., & Popovich, P. M. (2002). Correlation: Parametric and nonparametric measures. Thousand Oaks, CA: Sage.Google Scholar
  18. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829–836.Google Scholar
  19. Cohen, J. (1983). The cost of dichotomization. Applied Psychological Measurement, 7(3), 249.Google Scholar
  20. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.), Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  21. Cohen, J., West, S. G., Aiken, L., & Cohen, P. (2002). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  22. Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30(2), 163–183.Google Scholar
  23. Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5(5), 329–340.PubMedGoogle Scholar
  24. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2005). Three parietal circuits for number processing. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 433–455). New York: Psychology Press.Google Scholar
  25. Della-Maggiore, V., Sekuler, A. B., Grady, C. L., Bennett, P. J., Sekuler, R., & McIntosh, A. R. (2000). Corticolimbic interactions associated with performance on a short-term memory task are modified by age. Journal of Neuroscience, 20(22), 8410.PubMedGoogle Scholar
  26. Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118(2), 115–128.PubMedGoogle Scholar
  27. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.PubMedGoogle Scholar
  28. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
  29. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331.Google Scholar
  30. Fernandez, G., Specht, K., Weis, S., Tendolkar, I., Reuber, M., Fell, J., et al. (2003). Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology, 60(6), 969–975.PubMedGoogle Scholar
  31. Fiebach, C. J., Rissman, J., & D’Esposito, M. (2006). Modulation of inferotemporal cortex activation during verbal working memory maintenance. Neuron, 51(2), 251–261.PubMedGoogle Scholar
  32. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673–9678.Google Scholar
  33. Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.Google Scholar
  34. Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting activations in PET and fMRI: Levels of inference and power. NeuroImage, 4(3), 223–235.PubMedGoogle Scholar
  35. Geake, J. G., & Hansen, P. C. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555–564.PubMedGoogle Scholar
  36. Gibbs, S. E., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective & Behavioral Neuroscience, 5(2), 212–221.Google Scholar
  37. Gibbs, S. E. B., & D’Esposito, M. (2006). A functional magnetic resonance imaging study of the effects of pergolide, a dopamine receptor agonist, on component processes of working memory. Neuroscience, 139(1), 359–371.PubMedGoogle Scholar
  38. Gillath, O., Bunge, S. A., Shaver, P. R., Wendelken, C., & Mikulincer, M. (2005). Attachment-style differences in the ability to suppress negative thoughts: Exploring the neural correlates. NeuroImage, 28, 835–847.PubMedGoogle Scholar
  39. Glabus, M. F., Horwitz, B., Holt, J. L., Kohn, P. D., Gerton, B. K., Callicott, J. H., et al. (2003). Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cerebral Cortex, 13(12), 1352–1361.PubMedGoogle Scholar
  40. Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., & Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. NeuroImage, 8(4), 409–425.PubMedGoogle Scholar
  41. Gray, J. R., & Braver, T. S. (2002). Personality predicts working-memory-related activation in the caudal anterior cingulate cortex. Cognitive, Affective & Behavioral Neuroscience, 2(1), 64–75.Google Scholar
  42. Gray, J. R., Burgess, G. C., Schaefer, A., Yarkoni, T., Larsen, R. J., & Braver, T. S. (2005). Affective personality differences in neural processing efficiency confirmed using fMRI. Cognitive, Affective & Behavioral Neuroscience, 5, 182–190.Google Scholar
  43. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.PubMedGoogle Scholar
  44. Haier, R. J., Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: A positron emission tomographic study. Brain Research, 570(1–2), 134–143.PubMedGoogle Scholar
  45. Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429–441.Google Scholar
  46. Heinz, A., Siessmeier, T., Wrase, J., Hermann, D., Klein, S., Grusser-Sinopoli, S. M., et al. (2004). Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. American Journal of Psychiatry, 161(10), 1783–1789.PubMedGoogle Scholar
  47. Hester, R., Fassbender, C., & Garavan, H. (2004). Individual differences in error processing: A review and reanalysis of three event-related fMRI studies using the GO/NOGO task. Cerebral Cortex, 14(9), 986–994.PubMedGoogle Scholar
  48. Iglewicz, B., & Hoaglin, D. C. (1993). How to detect and handle outliers. Milwaukee, WI: ASQ Quality Press.Google Scholar
  49. Johnstone, T., Somerville, L. H., Alexander, A. L., Oakes, T. R., Davidson, R. J., Kalin, N. H., et al. (2005). Stability of amygdala BOLD response to fearful faces over multiple scan sessions. NeuroImage, 25, 1112–1123.PubMedGoogle Scholar
  50. Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139(1), 181–193.PubMedGoogle Scholar
  51. Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working memory, attention control, and the n-back task: A question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615–622.PubMedGoogle Scholar
  52. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–21728.Google Scholar
  53. Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28(2), 85–93.PubMedGoogle Scholar
  54. Kimberg, D. Y., Aguirre, G. K., Lease, J., & D’Esposito, M. (2001). Cortical effects of bromocriptine, a D-2 dopamine receptor agonist, in human subjects, revealed by fMRI. Human Brain Mapping, 12(4), 246–257.PubMedGoogle Scholar
  55. Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8(16), 3581.PubMedGoogle Scholar
  56. Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford.Google Scholar
  57. Kondo, H., Morishita, M., Osaka, N., Osaka, M., Fukuyama, H., & Shibasaki, H. (2004). Functional roles of the cingulo-frontal network in performance on working memory. NeuroImage, 21(1), 2–14.PubMedGoogle Scholar
  58. Kumari, V., Ffytche, D. H., Williams, S. C., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24(47), 10636.PubMedGoogle Scholar
  59. Larson, G. E., Haier, R. J., LaCasse, L., & Hazen, K. (1995). Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence, 21(3), 267–278.Google Scholar
  60. Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29(2), 578–586.PubMedGoogle Scholar
  61. Liu, T. T., Frank, L. R., Wong, E. C., & Buxton, R. B. (2001). Detection power, estimation efficiency, and predictability in event-related fMRI. NeuroImage, 13(4), 759–773.PubMedGoogle Scholar
  62. Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: Behavior, brain activation, and individual differences. Cognitive, Affective & Behavioral Neuroscience, 8(1), 99–112.Google Scholar
  63. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40.PubMedGoogle Scholar
  64. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835.PubMedGoogle Scholar
  65. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104.PubMedGoogle Scholar
  66. Manoach, D. S., Halpern, E. F., Kramer, T. S., Chang, Y., Goff, D. C., Rauch, S. L., et al. (2001). Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. American Journal of Psychiatry, 158(6), 955–958.PubMedGoogle Scholar
  67. Manuck, S. B., Brown, S. M., Forbes, E. E., & Hariri, A. R. (2007). Temporal stability of individual differences in amygdala reactivity. American Journal of Psychiatry, 164(10), 1613.PubMedGoogle Scholar
  68. Mattay, V. S., Callicott, J. H., Bertolino, A., Heaton, I., Frank, J. A., Coppola, R., et al. (2000). Effects of dextroamphetamine on cognitive performance and cortical activation. NeuroImage, 12(3), 268–275.PubMedGoogle Scholar
  69. Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9(2), 147–163.PubMedGoogle Scholar
  70. McGill, R., Tukey, J. W., & Larsen, W. A. (1978). Variations of box plots. The American Statistician, 32(1), 12–16.Google Scholar
  71. McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial pattern analysis of functional brain images using Partial Least Squares. NeuroImage, 3(3), 143–157.PubMedGoogle Scholar
  72. McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: Applications and advances. NeuroImage, 23, 250–263.Google Scholar
  73. Mecklinger, A., Weber, K., Gunter, T. C., & Engle, R. W. (2003). Dissociable brain mechanisms for inhibitory control: Effects of interference content and working memory capacity. Cognitive Brain Research, 18(1), 26–38.PubMedGoogle Scholar
  74. Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20(6), RC65.PubMedGoogle Scholar
  75. Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., et al. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56(2), 128–165.PubMedGoogle Scholar
  76. Mumford, J. A., & Nichols, T. E. (2008). Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. NeuroImage, 39(1), 261–268.PubMedGoogle Scholar
  77. Muncer, S. J., Craigie, M., & Holmes, J. (2003). Meta-analysis and power: Some suggestions for the use of power in research synthesis. Understanding Statistics, 2(1), 1–12.Google Scholar
  78. Murphy, K., & Garavan, H. (2004). An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage, 22(2), 879–885.PubMedGoogle Scholar
  79. Nee, D. E., Jonides, J., & Berman, M. G. (2007). Neural mechanisms of proactive interference-resolution. NeuroImage, 38(4), 740–751.PubMedGoogle Scholar
  80. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25.PubMedGoogle Scholar
  81. Ojemann, J. G., Akbudak, E., Snyder, A. Z., McKinstry, R. C., Raichle, M. E., & Conturo, T. E. (1997). Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage, 6(3), 156–167.PubMedGoogle Scholar
  82. Omura, K., Aron, A., & Canli, T. (2005). Variance maps as a novel tool for localizing regions of interest in imaging studies of individual differences. Cognitive, Affective & Behavioral Neuroscience, 5(2), 252–261.Google Scholar
  83. Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., et al. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage, 18(3), 789–797.PubMedGoogle Scholar
  84. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.PubMedGoogle Scholar
  85. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.PubMedGoogle Scholar
  86. Pocock, S. J. (2006). Current controversies in data monitoring for clinical trials. Clinical Trials, 3(6), 513.PubMedGoogle Scholar
  87. Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme groups approach: A critical reexamination and new recommendations. Psychological Methods, 10, 178–192.PubMedGoogle Scholar
  88. Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114(3), 510–532.PubMedGoogle Scholar
  89. Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales. Oxford, UK: Oxford Psychologists Press.Google Scholar
  90. Reuter-Lorenz, P. A. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394–400.PubMedGoogle Scholar
  91. Richeson, J. A., Baird, A. A., Gordon, H. L., Heatherton, T. F., Wyland, C. L., Trawalter, S., et al. (2003). An fMRI investigation of the impact of interracial contact on executive function. Nature Neuroscience, 6(12), 1323–1328.PubMedGoogle Scholar
  92. Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: Wiley.Google Scholar
  93. Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731.PubMedGoogle Scholar
  94. Rypma, B., Berger, J. S., Prabhakaran, V., Martin Bly, B., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33(3), 969–979.PubMedGoogle Scholar
  95. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences, 96(11), 6558–6563.Google Scholar
  96. Schaefer, A., Braver, T. S., Reynolds, J. R., Burgess, G. C., Yarkoni, T., & Gray, J. R. (2006). Individual differences in amygdala activity predict response speed during working memory. Journal of Neuroscience, 26(40), 10120–10128.PubMedGoogle Scholar
  97. Schlösser, R. G. M., Wagner, G., & Sauer, H. (2006). Assessing the working memory network: Studies with functional magnetic resonance imaging and structural equation modeling. Neuroscience, 139(1), 91–103.PubMedGoogle Scholar
  98. Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.Google Scholar
  99. Specht, K., Willmes, K., Shah, N. J., & Jaencke, L. (2003). Assessment of reliability in functional imaging studies. Journal of Magnetic Resonance Imaging, 17(4), 463–471.PubMedGoogle Scholar
  100. Strube, M. J. (2006). SNOOP: A program for demonstrating the consequences of premature and repeated null hypothesis testing. Behavior Research Methods, 38(1), 24–27.PubMedGoogle Scholar
  101. Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., & Poline, J. B. (2007). Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. NeuroImage, 35(1), 105–120.PubMedGoogle Scholar
  102. Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515.PubMedGoogle Scholar
  103. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.Google Scholar
  104. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505.PubMedGoogle Scholar
  105. Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.Google Scholar
  106. Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage, 22(4), 1679–1693.PubMedGoogle Scholar
  107. Wager, T. D., Keller, M. C., Lacey, S. C., & Jonides, J. (2005). Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage, 26(1), 99–113.PubMedGoogle Scholar
  108. Wager, T. D., Sylvester, C. Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27(2), 323–340.PubMedGoogle Scholar
  109. Yarkoni, T., Barch, D. M., Gray, J. A., Conturo, T., & Braver, T. S. (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS ONE, 4, e4527.Google Scholar
  110. Yarkoni, T., & Braver, T. S. (2008). Dissociable influences of probability, magnitude, and expected value on decision-making. Paper presented at the Cognitive Neuroscience Society, San Francisco, CA.Google Scholar
  111. Yarkoni, T., Braver, T. S., Gray, J. R., & Green, L. (2005). Prefrontal brain activity predicts temporally extended decision-making behavior. Journal of the Experimental Analysis of Behavior, 84(3), 537–554.PubMedGoogle Scholar
  112. Yarkoni, T., Gray, J. R., & Braver, T. S. (submitted). Medial posterior parietal cortex activation predicts working memory performance within and across subjects.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Psychology & RadiologyWashington UniversitySt. LouisUSA

Personalised recommendations