Advertisement

Neuroscientific Approaches to the Study of Individual Differences in Cognition and Personality

  • Aljoscha C. Neubauer
  • Andreas Fink
Chapter
Part of the The Springer Series on Human Exceptionality book series (SSHE)

Abstract

In the particular field of the psychology of individual differences, the one that deals with cognitive performance probably has the longest and maybe the most comprehensive research tradition. Individual differences in cognitive ability, viz. intelligence, now span more than 100 years of research tradition, if we start from Francis Galton’s (1883) notion of intelligence as an inherited feature of an efficiently functioning central nervous system (CNS). While it is mostly known that his approach to measure CNS efficiency by using simple sensory and motor tasks (that he correlated with indices of success and accomplishment) was not particularly successful, later on his approach received extensive attention. Basically starting with Erwin Roth’s (1964) study on “Die Geschwindigkeit der Informationsverarbeitung und ihr Zusammenhang mit Intelligenz” (The relationship of speed of information processing to intelligence), considerable evidence on the relationship between basic information processing characteristics of individuals and their measured cognitive ability (now using psychometric intelligence tests) has been collected. Some of the most highly visible intelligence researchers who deal with this line of research, recently provided excellent reviews (Deary, 2000; Jensen, 2006) showing that there is an overwhelming evidence for a positive relationship between speed of information processing and psychometric intelligence. Proponents of this line of research often refer to the basic quality of such elementary cognitive tasks (ECTs), assuming that they measure relatively close to fundamental processes of the brain. Recently, a second important elementary cognitive approach to human intelligence has collected a considerable body of evidence for a relationship of working memory and central executive functioning with psychometric intelligence (e.g., Collette & van der Linden, 2002; Conway, Cowen, Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999; Smith & Jonides, 2003).

Keywords

Alpha Band Divergent Thinking Cortical Arousal Alpha Frequency Band Emotional Face Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 997–1013.CrossRefGoogle Scholar
  2. Andreasen, N. C., O’Leary, D. S., Arndt, S., Cizadlo, T., Rezai, K., Watkins, G. L., et al. (1995). PET Studies of memory: Novel and practiced free recall of complex narratives. NeuroImage, 2, 284–295.PubMedCrossRefGoogle Scholar
  3. Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 11–20.PubMedCrossRefGoogle Scholar
  4. Canli, T. (2004). Functional brain mapping of extraversion and neuroticism: Learning from individual differences in emotion processing. Journal of Personality, 72, 1105–1132.PubMedCrossRefGoogle Scholar
  5. Charlot, V., Tzourio, N., Zilbovicius, M., Mazoyer, B., & Denis, M. (1992). Different mental imagery abilities result in different regional cerebral blood flow activation patterns during cognitive tasks. Neuropsychologia, 30, 565–580.PubMedCrossRefGoogle Scholar
  6. Chavanon, M.-L., Wacker, J., Leue, A., & Stemmler, G. (2007). Evidence for a dopaminergic link between working memory and agentic extraversion: An analysis for load-related changes in EEG alpha 1 activity. Biological Psychology, 74, 46–59.PubMedCrossRefGoogle Scholar
  7. Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26, 105–125.PubMedCrossRefGoogle Scholar
  8. Conway, A. R. A., Cowen, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183.CrossRefGoogle Scholar
  9. Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55, 343–361.PubMedCrossRefGoogle Scholar
  10. Deary, I. J. (2000). Looking down on human intelligence: From psychometrics to the brain. Oxford, NY: Oxford University Press.CrossRefGoogle Scholar
  11. Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 1011–1026.CrossRefGoogle Scholar
  12. Doppelmayr, M., Klimesch, W., Hödlmoser, K., Sauseng, P., & Gruber, W. (2005). Intelligence related upper alpha desynchronization in a semantic memory task. Brain Research Bulletin, 66, 171–177.PubMedCrossRefGoogle Scholar
  13. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331.CrossRefGoogle Scholar
  14. Ertl, J., & Schafer, E. (1969). Brain response correlates of psychometric intelligence. Nature, 223, 421–422.PubMedCrossRefGoogle Scholar
  15. Eysenck, H. J. (1967). The biological basis of personality. Springfield, IL: Charles C. Thomas.Google Scholar
  16. Eysenck, M. W. (1982). Attention and arousal. New York: Springer.CrossRefGoogle Scholar
  17. Fink, A. (2005). Event-related desynchronization in the EEG during emotional and cognitive information processing: Differential effects of extraversion. Biological Psychology, 70, 152–160.PubMedCrossRefGoogle Scholar
  18. Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 68–76.PubMedCrossRefGoogle Scholar
  19. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3), 734–748.PubMedCrossRefGoogle Scholar
  20. Fink, A., Grabner, R. H., Neuper, C., & Neubauer, A. C. (2005). Extraversion and cortical activation during memory performance. International Journal of Psychophysiology, 56, 129–141.PubMedCrossRefGoogle Scholar
  21. Fink, A., & Neubauer, A. C. (2004). Extraversion and cortical activation: Effects of task complexity. Personality and Individual Differences, 36, 333–347.CrossRefGoogle Scholar
  22. Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.PubMedCrossRefGoogle Scholar
  23. Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and creativity from a neuroscientific perspective. Personality and Individual Differences, 44, 299–310.CrossRefGoogle Scholar
  24. Fink, A., Schrausser, D. G., & Neubauer, A. C. (2002). The moderating influence of extraversion on the relationship between IQ and cortical activation. Personality and Individual Differences, 33, 311–326.CrossRefGoogle Scholar
  25. Gale, A. (1983). Electroencephalographic studies of extraversion-introversion: A case study in the psychophysiology of individual differences. Personality and Individual Differences, 4, 371–380.CrossRefGoogle Scholar
  26. Gale, A., Edwards, J., Morris, P., Moore, R., & Forrester, D. (2001). Extraversion-introversion, neuroticism-stability, and EEG indicators of positive and negative emphatic mood. Personality and Individual Differences, 30, 449–461.Google Scholar
  27. Galton, F. (1883). Inquiries into human faculty and its development. London: Macmillan.Google Scholar
  28. Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 829–839.PubMedCrossRefGoogle Scholar
  29. Grabner, R. H., Fink, A., Stipacek, A., Neuper, C., & Neubauer, A. C. (2004). Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cognitive Brain Research, 20, 212–225.PubMedCrossRefGoogle Scholar
  30. Gray, J. R., Burgess, G. C., Schaefer, A., Yarkoni, T., Larsen, R. J., & Braver, T. S. (2005). Affective personality differences in neural processing efficiency confirmed using fMRI. Cognitive, Affective & Behavioral Neuroscience, 5, 182–190.CrossRefGoogle Scholar
  31. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.PubMedCrossRefGoogle Scholar
  32. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5, 471–482.PubMedCrossRefGoogle Scholar
  33. Guilford, J. P. (1950). Creativity. The American Psychologist, 5, 444–454.PubMedCrossRefGoogle Scholar
  34. Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.Google Scholar
  35. Hagemann, D., Naumann, E., Lurken, A., Becker, G., Maier, S., & Bartussek, D. (1999). EEG asymmetry, dispositional mood and personality. Personality and Individual Differences, 27, 541–568.CrossRefGoogle Scholar
  36. Haier, R., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11, 405–414.CrossRefGoogle Scholar
  37. Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.CrossRefGoogle Scholar
  38. Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426.CrossRefGoogle Scholar
  39. Jaušovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25, 253–267.CrossRefGoogle Scholar
  40. Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237.CrossRefGoogle Scholar
  41. Jaušovec, N., & Jaušovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36, 73–88.PubMedCrossRefGoogle Scholar
  42. Jaušovec, N., & Jaušovec, K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and Cognition, 54, 65–74.PubMedCrossRefGoogle Scholar
  43. Jaušovec, N., & Jaušovec, K. (2005). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56, 223–235.PubMedCrossRefGoogle Scholar
  44. Jensen, A. R. (2006). Clocking the mind: Mental chronometry and individual differences. Oxford: Elsevier.Google Scholar
  45. Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.PubMedCrossRefGoogle Scholar
  46. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500–510.CrossRefGoogle Scholar
  47. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.PubMedCrossRefGoogle Scholar
  48. Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. In C. Neuper & W. Klimesch (Eds.), Progress in brain research: Vol. 159 Event-related dynamics of brain oscillations (pp. 151–165). Amsterdam: Elsevier.CrossRefGoogle Scholar
  49. Klimesch, W., Doppelmayr, M., Pachinger, T., & Russegger, H. (1997). Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6, 83–94.PubMedCrossRefGoogle Scholar
  50. Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). “Paradoxical” alpha synchronization in a memory task. Cognitive Brain Research, 7, 493–501.PubMedCrossRefGoogle Scholar
  51. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition timing hypothesis. Brain Research Reviews, 53, 63–88.PubMedCrossRefGoogle Scholar
  52. Klimesch, W., Schimke, H., Doppelmayr, M., Ripper, B., Schwaiger, J., & Pfurtscheller, G. (1996). Event-related desynchronization (ERD) and the Dm-effect: Does alpha desynchronization during encoding predict later recall performance? International Journal of Psychophysiology, 24, 47–60.PubMedCrossRefGoogle Scholar
  53. Kris, E. (1952). Psychoanalytic explorations in art. New York: International Universities Press.Google Scholar
  54. Kucharska-Pietura, K., Phillips, M. L., Gernand, W., & David, A. S. (2003). Perception of emotions from faces and voices following unilateral brain damage. Neuropsychologia, 41, 1082–1090.PubMedCrossRefGoogle Scholar
  55. Kumari, V., Ffytche, D. H., Williams, S. C., & Gray, J. A. (2004). Personality predicts brain responses to cognitive demands. Journal of Neuroscience, 24, 10636–10641.PubMedCrossRefGoogle Scholar
  56. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity?! Intelligence, 14, 389–433.CrossRefGoogle Scholar
  57. Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage, 29, 578–586.PubMedCrossRefGoogle Scholar
  58. Martindale, C. (1999). Biological bases of creativity. In R. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge, UK: Cambridge University Press.Google Scholar
  59. Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157–167.PubMedCrossRefGoogle Scholar
  60. Martindale, C., & Hines, D. (1975). Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biological Psychology, 3, 71–80.CrossRefGoogle Scholar
  61. Matthews, G., & Gilliland, K. (1999). The personality theories of H. J. Eysenck and J. A. Gray: A comparative review. Personality and Individual Differences, 26, 583–626.CrossRefGoogle Scholar
  62. Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.PubMedCrossRefGoogle Scholar
  63. Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341–369.CrossRefGoogle Scholar
  64. Mölle, M., Marshall, L., Wolf, B., Fehm, H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology, 36, 95–104.PubMedCrossRefGoogle Scholar
  65. Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35, 811–827.CrossRefGoogle Scholar
  66. Neubauer, A. C., & Fink, A. (2009). Intelligence and Neural efficiency. Neuroscience & Biobehavioral Reviews, 33, 1004–1023.Google Scholar
  67. Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence, 30, 515–536.CrossRefGoogle Scholar
  68. Neubauer, A. C., Grabner, R. H., Fink, A., & Neuper, C. (2005). Intelligence and neural efficiency: Further evidence of the influence of task content and sex on the brain-IQ relationship. Cognitive Brain Research, 25, 217–225.PubMedCrossRefGoogle Scholar
  69. Neubauer, A. C., Sange, G., & Pfurtscheller, G. (1999). Psychometric intelligence and event-related desynchronisation during performance of a letter matching task. In G. Pfurtscheller & F. H. Lopes da Silva (Eds.), Event-Related Desynchronization (ERD) and Related Oscillatory EEG-phenomena of the awake brain (pp. 219–231). Amsterdam: Elsevier.Google Scholar
  70. Posner, M. I., & Mitchell, R. F. (1967). Chronometric analysis of classification. Psychological Review, 74, 392–409.PubMedCrossRefGoogle Scholar
  71. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefGoogle Scholar
  72. Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cognitive Brain Research, 10, 11–18.PubMedCrossRefGoogle Scholar
  73. Razoumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: An EEG investigation in human subjects. Neuroscience Letters, 362, 193–195.CrossRefGoogle Scholar
  74. Razoumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73, 96–102.CrossRefGoogle Scholar
  75. Roth, E. (1964). Die Geschwindigkeit der Verarbeitung von Information und ihr Zusammenhang mit Intelligenz [The relationship of speed of information processing to intelligence]. Zeitschrift für Experimentelle und Angewandte Psychologie, 11, 616–622.Google Scholar
  76. Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Reasoning and working memory: Common and distinct neural processes. Neuropsychologia, 41, 1241–1253.PubMedCrossRefGoogle Scholar
  77. Runco, M. A. (1999). Divergent thinking. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (pp. 577–582). San Diego, CA: Academic Press.Google Scholar
  78. Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., et al. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33, 969–979.PubMedCrossRefGoogle Scholar
  79. Schmidtke, J. I., & Heller, W. (2004). Personality, affect and EEG: Predicting patterns of regional brain activity related to extraversion and neuroticism. Personality and Individual Differences, 36, 717–732.CrossRefGoogle Scholar
  80. Smith, E. E., & Jonides, J. (2003). Executive control and thought. In L. Squire (Ed.), Fundamentals of neuroscience (pp. 1377–1394). New York: Academic Press.Google Scholar
  81. Stankov, L. (2000). Complexity, metacognition, and intelligence. Intelligence, 28, 121–143.CrossRefGoogle Scholar
  82. Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36, 311–322.CrossRefGoogle Scholar
  83. Sternberg, R. J., & Lubart, T. (1996). Investing in creativity. The American Psychologist, 51(7), 677–688.CrossRefGoogle Scholar
  84. Tran, Y., Craig, A., & McIsaac, P. (2001). Extraversion-introversion and 8–13 Hz waves in frontal cortical regions. Personality and Individual Differences, 30, 205–215.CrossRefGoogle Scholar
  85. Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16, 273–288.CrossRefGoogle Scholar
  86. Vernon, P. A., Wickett, J. C., Bazana, P. G., & Stelmack, R. M. (2000). The neuropsychology and psychophysiology of human intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence (pp. 245–264). New York: Cambridge University Press.CrossRefGoogle Scholar
  87. Vitouch, O., Bauer, H., Gittler, G., Leodolter, M., & Leodolter, U. (1997). Cortical activity of good and poor spatial test performers during spatial and verbal processing studied with slow potential topography. International Journal of Psychophysiology, 27, 183–199.PubMedCrossRefGoogle Scholar
  88. Wickett, J. C., & Vernon, P. A. (1994). Peripheral nerve conduction velocity, reaction time, and intelligence: An attempt to replicate Vernon and Mori (1992). Intelligence, 18, 127–131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Psychology, Karl-Franzens-University GrazGrazAustria

Personalised recommendations