Individual Differences in Working Memory and Higher-Ordered Processing: The Commentaries

  • Mary L. Courage
  • Mark L. Howe
  • Małgorzata Ilkowska
  • Randall W. Engle
  • Małgorzata Kossowska
  • Edward Orehek
  • Arie W. Kruglanski
  • Jennifer C. McVay
  • Michael J. Kane
  • Magdalena Marszał-Wiśniewska
  • Dominika Zajusz
  • Jarosław Orzechowski
  • Grzegorz Sedek
  • Aneta Brzezicka
Part of the The Springer Series on Human Exceptionality book series (SSHE)


Executive functions (EF) are those higher-level cognitive activities that include the monitoring and self-regulation of attention, thought, and action, and the ability to plan behavior and to inhibit inappropriate responses. These cognitive control processes are voluntary and effortful and have been described as providing a system for overriding routine or reflexive behavior in favor of more situationally appropriate and adaptive behavior (Shallice, 1988). As such, these processes are integrally tied to the functioning and development of working memory (WM) (see Cowan & Alloway, 2009). The significance of EF is evident in developmental conditions such as attention deficit hyperactivity disorder, autism, and fetal alcoholism spectrum disorder that are characterized by poor executive functioning across a variety of behavioral domains. Executive functioning activities are immature in infancy and toddlerhood but develop slowly over the preschool years and continue to be fine-tuned into adolescence. For example, research shows that 2-, 3-, and most 4-year-olds consistently perform poorly on a variety of tasks that require the ability to inhibit a prepotent but inappropriate response in a conflict task (e.g., dimensional switching), to demonstrate the theory of mind reasoning (e.g., false belief task), to mentally represent an object in two different ways simultaneously (e.g., the appearance-reality distinction task), or to execute a plan (e.g., motor sequencing tasks). In contrast, 5- and 6-year-olds succeed on these tasks, although some of the more sophisticated iterations of these will not be successfully performed until later childhood or adolescence (for a discussion see Goswami, 2007).


Work Memory Work Memory Capacity Autobiographical Memory Reasoning Task Executive Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aalto, S., Brück, A., Laine, M., Någren, K., & Rinne, J. O. (2005). Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: A positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. Journal of Neuroscience, 25(10), 2471–2477.PubMedCrossRefGoogle Scholar
  2. Anderson, K. J., Revelle, W., & Lynch, M. J. (1989). Caffeine, impulsivity, and memory scanning: A comparison of two explanations for the Yerkes and Dodson effect. Motivation and Emotion, 13, 1–20.CrossRefGoogle Scholar
  3. Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106, 529–550.PubMedCrossRefGoogle Scholar
  4. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.PubMedCrossRefGoogle Scholar
  5. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7(1), 25–31.CrossRefGoogle Scholar
  6. Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interaction between attention and working memory. Neuroscience, 139(1), 201–208.PubMedCrossRefGoogle Scholar
  7. Baars, B. J. (1997). Some essential differences between consciousness and attention, perception, and working memory. Consciousness and Cognition, 6, 363–371.CrossRefGoogle Scholar
  8. Baddeley, A. D. (2003). Working memory: Looking back and looping forward. Nature Reviews Neuroscience, 4, 829–839.PubMedCrossRefGoogle Scholar
  9. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–90). New York: Academic Press.Google Scholar
  10. Barrett, L., Tugade, M., & Engle, R. (2004). Individual differences in working memory capacity and dual-processes theories of the mind. Psychological Bulletin, 130, 553–573.PubMedCrossRefGoogle Scholar
  11. Bauer, P. J. (2007). Remembering the times of our lives: Memory in infancy and beyond. Hove, UK: The Psychology Press.Google Scholar
  12. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking under pressure” in math. Psychological Science, 16, 101–105.PubMedCrossRefGoogle Scholar
  13. Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. Journal of Gerontology: Psychological Sciences, 60B, 223–233.CrossRefGoogle Scholar
  14. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMedCrossRefGoogle Scholar
  15. Braver, T. S., Barch, D. M., & Gray, J. R. (2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836.PubMedCrossRefGoogle Scholar
  16. Brzezicka, A. (2009). The influence of dysphoric mood and helplessness training on memory and reasoning processes: The role of working memory and psychophysiological correlates of cognitive processes. Unpublished research data.Google Scholar
  17. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Science, 4, 215–222.CrossRefGoogle Scholar
  18. Carpenter, M., Nagell, K., & Tomasello, M. (1998). Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monographs of the Society for Research in Child Development, 63(4), 1–143. Serial no. 255.CrossRefGoogle Scholar
  19. Chase, W. G., & Ericsson, K. A. (1981). Skilled memory. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 141–189). Hillsdale, NJ: Erlbaum.Google Scholar
  20. Chase, W. G., & Simon, H. A. (1973). The mind’s eye in chess. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.Google Scholar
  21. Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cognitive Brain Research, 25, 607–623.PubMedCrossRefGoogle Scholar
  22. Chi, M. T. H. (1978). Knowledge structures and memory development. In R. S. Seigler (Ed.), Children’s thinking: What develops? (pp. 76–93). Hillsdale, NJ: Erlbaum.Google Scholar
  23. Colom, R., Abad, F. J., Rebollo, I., & Shih, P. C. (2005). Memory span and general intelligence: A latent variable approach. Intelligence, 33, 623–642.CrossRefGoogle Scholar
  24. Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52, 337–367.PubMedCrossRefGoogle Scholar
  25. Conway, A. R., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin and Review, 12, 769–786.PubMedCrossRefGoogle Scholar
  26. Courage, M. L., Reynolds, G., & Richards, J. E. (2006). Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, 77, 680–695.PubMedCrossRefGoogle Scholar
  27. Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386, 608–611.PubMedCrossRefGoogle Scholar
  28. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163–191.PubMedCrossRefGoogle Scholar
  29. Cowan, N. (1997). Attention and Memory. An Integrated Framework (Oxford Psychology Series 26). New York: Oxford University Press.Google Scholar
  30. Cowan, N., & Alloway, T. (2009). The development of working memory in childhood. In M. Courage & N. Cowan (Eds.), The development of memory in infancy and childhood (pp. 303–342). Hove, UK: The Psychology Press.Google Scholar
  31. Dalgleish, T., Williams, J. M. G., Golden, A. J., Perkins, R., Barrett, L. F., Barnard, P. J., et al. (2007). Reduced specificity of autobiographical memory and depression: The role of executive control. Journal of Experimental Psychology. General, 136, 23–42.PubMedCrossRefGoogle Scholar
  32. Davidson, R. J. (2004). What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biological Psychology, 67, 219–233.PubMedCrossRefGoogle Scholar
  33. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803–1806.PubMedCrossRefGoogle Scholar
  34. de Frias, C. M., Annerbrink, K., Westberg, L., Erikkson, E., Adolfsson, R., & Nilsson, G. (2005). Catechol-O-Methyltransferase val 158 met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.PubMedCrossRefGoogle Scholar
  35. DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2005). Sources of openness/intellect: Cognitive and neuropsychological correlates of the fifth factor of personality. Journal of Personality, 73, 825–858.PubMedCrossRefGoogle Scholar
  36. Diamond, A. (1985). The development of the ability to use recall to guide action, as indicated by infants’ performance on the A-not-B task. Child Development, 56, 868–883.PubMedCrossRefGoogle Scholar
  37. Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science, 11, 467–473.PubMedCrossRefGoogle Scholar
  38. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.PubMedCrossRefGoogle Scholar
  39. Eacott, M. J., & Crawley, R. A. (1998). The offset of childhood amnesia: Memory for events that occurred before age 3. Journal of Experimental Psychology. General, 127, 22–33.PubMedCrossRefGoogle Scholar
  40. Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23.CrossRefGoogle Scholar
  41. Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. Ross (Ed.), The psychology of learning and motivation (pp. 145–199). New York: Academic Press.Google Scholar
  42. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology. General, 128, 309–331.PubMedCrossRefGoogle Scholar
  43. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.PubMedCrossRefGoogle Scholar
  44. Ericsson, K. A., & Polson, P. G. (1988). Memory for restaurant orders. In M. Chi, R. Glaser, & M. Farr (Eds.), The nature of expertise (pp. 23–70). Hillsdale, New York: Erlbaum.Google Scholar
  45. Eysenck, M. W., & Calvo, M. (1992). Anxiety and performance: The processing theory. Cognition and Emotion, 6, 409–434.CrossRefGoogle Scholar
  46. Fangmeier, T., Knauff, M., Ruff, C. C., & Sloutsky, V. (2006). fMRI Evidence for a three-stage model of deductive reasoning. Journal of Cognitive Neuroscience, 18, 320–334.PubMedCrossRefGoogle Scholar
  47. Fletcher. P. C., & Henson, R. N. (2001). Frontal lobe and human memory: Insight from functional imaging. Brain, 124, 849–881.PubMedCrossRefGoogle Scholar
  48. Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., et al. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14–25.PubMedCrossRefGoogle Scholar
  49. Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology. General, 137, 201–225.PubMedCrossRefGoogle Scholar
  50. Goswami, U. (2007). Cognitive development: The learning brain. Hove, UK: The Psychology Press.Google Scholar
  51. Guida, A., & Tardieu, H. (2005, on line). Is personalization a way to operationalise long-term working memory? Current Psychological Letters. Behaviour, Brain and Cognition, 15(1). Retrieved from
  52. Harlaar, N., Butcher, L. M., Meaburn, E., Sham, P., Craig, I. W., & Plomin, R. (2005). A behavioural genomic analysis of DNA markers associated with general cognitive ability in 7-year-olds. Journal of Child Psychology and Psychiatry, 46, 1097–1107.PubMedCrossRefGoogle Scholar
  53. Hayne, H., & Simcock, G. (2009). Memory development in toddlers. In M. Courage & N. Cowan (Eds.), The development of memory in infancy and childhood (pp. 43–68). Hove, UK: The Psychology Press.Google Scholar
  54. Henson, R. N. (2005). What can functional neuroimaging tell the experimental psychologist? Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 58(2), 193–233.CrossRefGoogle Scholar
  55. Hugdahl, K., Specht, K., Biringer, E., Weis, S., Elliott, R., Hammar, A., et al. (2007). Increased parietal and frontal activation after remission from recurrent major depression: A repeated fMRI study. Cognitive Therapy and Research, 31, 147–160.CrossRefGoogle Scholar
  56. Isen, A. M. (1999). Positive affect. In T. Dalgleish & M. Powers (Eds.), The handbook of cognition and emotions (pp. 75–94). Hillsdale, NJ: Erlbaum.Google Scholar
  57. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training in working memory. Proceedings of the National Academy of Sciences, 105, 6829–6833.CrossRefGoogle Scholar
  58. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension. Psychological Review, 99, 122–149.PubMedCrossRefGoogle Scholar
  59. Kane, M. J., Conway, A. R. A., Hambrick, D. Z., & Engle, R. W. (2007). Variation in working memory as variation in executive attention and control. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 21–48). New York: Oxford University Press.Google Scholar
  60. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual differences perspective. Psychonomic Bulletin and Review, 9, 637–671.PubMedCrossRefGoogle Scholar
  61. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology. General, 133, 189–217.PubMedCrossRefGoogle Scholar
  62. Kane, M. J., Poole, B. J., Tuholski, S. W., & Engle, R. W. (2006). Working memory capacity and the top-down control of visual search: Exploring the boundaries of “executive attention”. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 749–777.PubMedCrossRefGoogle Scholar
  63. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD: A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.PubMedCrossRefGoogle Scholar
  64. Klinger, E., Barta, S. G., & Maxeiner, M. E. (1980). Motivational correlates of thought content frequency and commitment. Journal of Personality and Social Psychology, 39, 1222–1237.CrossRefGoogle Scholar
  65. Knauff, M., Mulack, T., Kassubek, J., Salih, H. R., & Greenlee, M. W. (2002). Spatial imagery in deductive reasoning: A functional MRI study. Cognitive Brain Research, 13, 203–212.PubMedCrossRefGoogle Scholar
  66. Koenigs, M., Huey, E. D., Calamia, M., Raymont, V., Tranel, D., & Grafman, D. (2008). Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. The Journal of Neuroscience, 28(47), 12341–12348.PubMedCrossRefGoogle Scholar
  67. Kossowska, M. (2007). Motivation toward closure and cognitive processes: An individual differences approach. Personality and Individual Differences, 43, 2149–2158.CrossRefGoogle Scholar
  68. Kruglanski, A. W., & Freund, T. (1983). The freezing and unfreezing of lay interferences: The effect of impressional primacy, ethnic stereotyping, and numerical anchoring. Journal of Experimental Social Psychology, 19, 448–468.CrossRefGoogle Scholar
  69. Kruglanski, A. W., Webster, D. M., & Klem, A. (1993). Motivated resistance and openness to persuasion in the presence or absence of prior information. Journal of Personality and Social Psychology, 65, 861–877.PubMedCrossRefGoogle Scholar
  70. Kuhl, J., & Beckmann, J. (1994). Volition and personality: Action versus state orientation. Göttingen/Seattle: Hogrefe.Google Scholar
  71. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.PubMedCrossRefGoogle Scholar
  72. Lavie, N. (2005). Distracted and confused? Selective attention under load. Trends in Cognitive Sciences, 9, 75–82.PubMedCrossRefGoogle Scholar
  73. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology. General, 133, 339–354.PubMedCrossRefGoogle Scholar
  74. Lecerf, T., Ghisletta, P., & Jouffray, C. (2004). Intraindividual variability and level of performance in four-visuo-spatial working memory tasks. Swiss Journal of Psychology, 63, 261–272.CrossRefGoogle Scholar
  75. Legierski, J., & Kossowska, M. (2008). Epistemic motivation, working memory and diagnostic information search. Unpublished manuscript.Google Scholar
  76. Mathews, A., & Mackintosh, B. (1998). A cognitive-motivational analysis of anxiety. Cognitive Therapy and Research, 122, 539–560.CrossRefGoogle Scholar
  77. Matthews, G., & Deary, I. J. (2002). Personality traits. Cambridge: University Press.Google Scholar
  78. Matthews, G., Jones, D. M., & Chamberlain, A. G. (1989). Interactive effects of extraversion and arousal on attentional task performance: Multiple resources or encoding processes? Journal of Personality and Social Sciences, 56, 629–639.CrossRefGoogle Scholar
  79. Mayberg, H. S., Silva, J. A., Brannan, S. K., Tekell, J. L., Mahurin, R. K., McGinnis, S., et al. (2002). The functional neuroanatomy of the placebo effect. American Journal of Psychiatry, 159, 728–737.PubMedCrossRefGoogle Scholar
  80. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.PubMedCrossRefGoogle Scholar
  81. Mitchell, R. L. C., & Phillips, L. H. (2007). The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions. Neuropsychologia, 45, 617–629.PubMedCrossRefGoogle Scholar
  82. Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control. New York: Cambridge University Press.CrossRefGoogle Scholar
  83. Narayanan, N. S., Prabhakaran, V., Bunge, S. A., Christoff, K., Fine, E. M., & Gabrieli, J. D. E. (2005). The role of the prefrontal cortex in the maintenance of verbal working memory: An event-related fMRI analysis. Neuropsychology, 19(2), 223–232.PubMedCrossRefGoogle Scholar
  84. Nęcka, E. (2000). Pobudzenie Intelektu. Zarys Formalnej Teorii Inteligencji (Arousal of the Intellect. Outline of a Formal Theory of Intelligence). Cracow: Universitas.Google Scholar
  85. Nelson, K. (1993). The psychological and social origins of autobiographical memory. Psychological Science, 4, 7–14.CrossRefGoogle Scholar
  86. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3, 400–424.CrossRefGoogle Scholar
  87. Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27, 341–356.PubMedCrossRefGoogle Scholar
  88. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.PubMedCrossRefGoogle Scholar
  89. Park, S., Kim, M. S., & Chun, M. M. (2007). Concurrent working memory load can facilitate selective attention: Evidence for specialized load. Journal of Experimental Psychology: Human Perception and Performance, 33, 1062–1075.PubMedCrossRefGoogle Scholar
  90. Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362(6418), 342–345.PubMedCrossRefGoogle Scholar
  91. Perner, J., & Lang, B. (1999). Development of theory of mind and executive control. Trends in Cognitive Sciences, 3, 337–344.PubMedCrossRefGoogle Scholar
  92. Perner, J., & Ruffman, T. (1995). Episodic memory and autonoetic consciousness: Developmental evidence and a theory of childhood amnesia. Journal of Experimental Child Psychology, 59, 516–548.PubMedCrossRefGoogle Scholar
  93. Pillemer, D. B., & White, S. H. (1989). Childhood events recalled by children and adults. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 21, pp. 297–340). San Diego, CA: Academic Press.Google Scholar
  94. Poole, B. J., & Kane, M. J. (2009). Working memory capacity predicts the executive control of visual search among distractors: The influences of sustained and selective attention. Quarterly Journal of Experimental Psychology, 62, 1430–1454.CrossRefGoogle Scholar
  95. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedCrossRefGoogle Scholar
  96. Posner, M. I., & Rothbart, M. K. (2007). Educating the human brain. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  97. Postle, B. R., & D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11(6), 585–597.PubMedCrossRefGoogle Scholar
  98. Postle, B. R., Stern, C. E., Rosen, B. R., & Corkin, S. (2000). An fMRI investigation of cortical contributions to spatial and nonspatial visual working memory. Neuroimage, 11(5), 409–423.PubMedCrossRefGoogle Scholar
  99. Povinelli, D. J., & Simon, B. B. (1998). Young children’s understanding of briefly versus extremely delayed images of the self: Emergence of the autobiographical stance. Developmental Psychology, 34, 188–194.PubMedCrossRefGoogle Scholar
  100. Raichle, M. E., MacLeod, A. M., Snyder, A., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. PNAS, 98, 676–682.PubMedCrossRefGoogle Scholar
  101. Redick, T. S., & Engle, R. W. (2006). Working memory capacity and attention network test performance. Applied Cognitive Psychology, 20, 713–721.CrossRefGoogle Scholar
  102. Reimann, B., & McNelly, R. (1995). Cognitive processing of personally relevant information. Cognition and Emotion, 9, 324–340.Google Scholar
  103. Revelle, W. (1993). Individual differences in personality and motivation: non-cognitive determinants of cognitive performance. In A. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness and control: A tribute to Donald Broadbent (pp. 346–373). Oxford: Oxford University Press.Google Scholar
  104. Revelle, W., & Loftus, D. A. (1990). Individual differences and arousal: Implications for study of mood and memory. Cognition and Emotion, 4, 209–237.CrossRefGoogle Scholar
  105. Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and participant performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14, 721–731.PubMedCrossRefGoogle Scholar
  106. Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6558–6563.PubMedCrossRefGoogle Scholar
  107. Schneider, W., Körkel, J., & Wienert, F. E. (1989). Domain-specific knowledge and memory performance: A comparison of high- and low-aptitude children. Journal of Educational Psychology, 81, 306–312.CrossRefGoogle Scholar
  108. Sedek, G., & von Hecker, U. (2004). Effects of subclinical depression and aging on generative reasoning about linear orders: Same or different processing limitations? Journal of Experimental Psychology. General, 133, 237–260.PubMedCrossRefGoogle Scholar
  109. Shallice, T. (1988). From neuropsychology to mental structure. New York: Cambridge University Press.CrossRefGoogle Scholar
  110. Smallwood, J., O’Connor, R. C., Sudbery, M. V., & Obonsawin, M. (2007). Mind-wandering and dysphoria. Cognition and Emotion, 21, 816–842.CrossRefGoogle Scholar
  111. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedCrossRefGoogle Scholar
  112. Smith, E. E., Jonides, J., Koeppe, R. A., Awh, R., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus Object Working Memory: PET Investigations. Journal of Cognitive Neuroscience, 7(3), 337–356.CrossRefGoogle Scholar
  113. Smyth, M. M., & Scholey, K. A. (1994). Interference in immediate spatial memory. Memory and Cognition, 22(1), 1–13.CrossRefGoogle Scholar
  114. Sobel, K. V., Gerrie, M. P., Poole, B. J., & Kane, M. J. (2007). Individual differences in working memory capacity and visual search: The roles of top-down and bottom-up processing. Psychonomic Bulletin and Review, 14, 840–845.PubMedCrossRefGoogle Scholar
  115. Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. NeuroImage, 11(5 I), 392–399.PubMedCrossRefGoogle Scholar
  116. Strelau, J. (1994). The concepts of arousal and arousability as used in temperament studies. In J. E. Bates & T. D. Wachs (Eds.), Temperament: Individual differences at the interface of biology and behavior (pp. 117–141). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  117. Usher, J. A., & Neisser, U. (1993). Childhood amnesia and the beginnings of memory for four early life events. Journal of Experimental Psychology. General, 122, 155–165.PubMedCrossRefGoogle Scholar
  118. Vaish, A., & Striano, T. (2004). Is visual reference necessary? Vocal versus facial cues in social referencing. Developmental Science, 7, 261–269.PubMedCrossRefGoogle Scholar
  119. Waltz, J. A. (2005). Impairments of memory and reasoning in patients with neuropsychiatric illness: disruptions in dynamic cognitive binding? In R. W. Engle, G. Sedek, U. von Hecker, & D. N. McIntosh (Eds.), Cognitive limitations in aging and psychopathology (pp. 275–312). New York: Cambridge University Press.Google Scholar
  120. Watkins, E. R. (2008). Constructive and unconstructive repetitive thought. Psychological Bulletin, 134, 163–206.PubMedCrossRefGoogle Scholar
  121. Webster, D. M. (1993). Motivated augmentation and reduction of the overattribution bias. Journal of Personality and Social Psychology, 65, 261–271.PubMedCrossRefGoogle Scholar
  122. Webster, D., Richter, L., & Kruglanski, A. W. (1995). On leaping to conclusions when feeling tired: Mental fatigue effects on impression primacy. Journal of Experimental Social Psychology, 32, 181–195.CrossRefGoogle Scholar
  123. Willatts, P. (1990). Development of problem-solving strategies in infancy. In D. Bjorklund (Ed.), Children’s strategies: Contemporary views of cognitive development. Hillsdale, NJ: Erlbaum.Google Scholar
  124. Williams, J. M. G., Barnhofer, T., Crane, C., Hermans, D., Raes, F., Watkins, E., et al. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133, 122–148.PubMedCrossRefGoogle Scholar
  125. Williams, J. M. G., Matthews, A., & McLeod, C. (1996). The emotional Stroop task and psychopathology. Psychological Bulletin, 120, 3–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mary L. Courage
    • 1
  • Mark L. Howe
    • 2
  • Małgorzata Ilkowska
    • 3
  • Randall W. Engle
    • 3
  • Małgorzata Kossowska
    • 4
  • Edward Orehek
    • 5
  • Arie W. Kruglanski
    • 5
  • Jennifer C. McVay
    • 6
  • Michael J. Kane
    • 6
  • Magdalena Marszał-Wiśniewska
    • 7
  • Dominika Zajusz
    • 8
  • Jarosław Orzechowski
    • 4
  • Grzegorz Sedek
    • 9
  • Aneta Brzezicka
    • 9
  1. 1.Memorial UniversitySt. John’sCanada
  2. 2.Department of PsychologyLancaster UniversityLancasterUK
  3. 3.School of PsychologyGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Institute of Psychology, Jagiellonian UniversityCracowPoland
  5. 5.University of MarylandCollege ParkUSA
  6. 6.Department of PsychologyUniversity of North Carolina at GreensboroGreensboroUSA
  7. 7.Institute of Psychology, Polish Academy of SciencesWarsawPoland
  8. 8.Warsaw School of Social Sciences and HumanitiesWarsawPoland
  9. 9.Warsaw School of Social Sciences and HumanitiesInterdisciplinary Center for Applied Cognitive StudiesWarsawPoland

Personalised recommendations