Skip to main content

Working Memory Capacity and Individual Differences in Higher-Level Cognition

  • Chapter
  • First Online:
Handbook of Individual Differences in Cognition

Part of the book series: The Springer Series on Human Exceptionality ((SSHE))

Abstract

Let’s start with a riddle: what are the Authors referring to? “[It] is one of the greatest accomplishments of the human mind; it makes possible planning, reasoning, problem solving, reading, and abstraction.” (Conway, Jarrold, Kane, Miyake, & Towse, 2007, p. 3) “This concept [of it] and its limits is a key part of human condition. […] We need [it] to in language comprehension, […]; in arithmetic, […]; in reasoning, […]; and in most other types of cognitive tasks.” (Cowan, 2005a, p. 2) If it was not for the names of the authors of the above quotes, which no doubt for majority of readers indicate unambiguously the context of “it,” one could think that they are referring to terms like consciousness, abstract thinking, or the g factor. It is even more interesting that these quotes come from first pages of multipage books, where – in accordance with the rule “from the general to the particular” – one gives basic information about one’s subject matter. However, as Nęcka (in print) felicitously says in a paper concerning this concept: “[…] for some 2,500 years of psychology as a branch of philosophy, and then for almost 100 years of its independent development […], it was not considered necessary to use [this] term.” Thus, it is a concept of equal importance in psychology as consciousness, thinking, and intelligence, but much younger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Cowan (2007), however, this is not a universal assumption. There are theories that do not share this view. As examples, one can point to the long-term working memory theory by Ericsson and Kintsh (1995), and to the theory of task conflict by Meyer and Kieras (1997a, 1997b).

References

  • Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology: General, 131, 567–589.

    Article  Google Scholar 

  • Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 30–60.

    Article  PubMed  Google Scholar 

  • Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201–208.

    Article  PubMed  Google Scholar 

  • Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S., & Robbins, T. W. (1996). Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34(6), 515–526.

    Article  PubMed  Google Scholar 

  • Baddeley, A. D. (2007). Working memory, thought and action. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent advances in learning and motivation, 8 (pp. 47–90). New York: Academic.

    Google Scholar 

  • Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133, 83.

    Article  Google Scholar 

  • Barrouillet, P., & Lecas, J. F. (1998). How can mental models account for content effects in conditional reasoning: A developmental perspective. Cognition, 67, 209–253.

    Article  PubMed  Google Scholar 

  • Barrouillet, P., & Lecas, J. F. (1999). Mental models in conditional reasoning and working memory. Thinking and Reasoning, 5, 289–302.

    Article  Google Scholar 

  • Berman, K. F., Ostrem, J. L., Randolph, C., & Gold, J. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting test: A positron emission tomography study. Neuropsychologia, 33(8), 1027–1046.

    Article  PubMed  Google Scholar 

  • Braine, M. D. S., Reiser, B. J., & Rumain, B. (1984). Some empirical justification for a theory of natural propositional logic. In G. H. Bower (Ed.), The psychology of learning and motivation. New York: Academic.

    Google Scholar 

  • Buehner, M., Krumm, S., & Pick, M. (2005). Reasoning = working memory ≠ attention. Intelligence, 33, 251–272.

    Article  Google Scholar 

  • Capon, A., Handley, S., & Dennis, I. (2003). Working memory and reasoning: An individual differences perspective. Thinking and Reasoning, 9, 203–244.

    Article  Google Scholar 

  • Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404.

    Article  Google Scholar 

  • Colom, R., Abad, F., Rebollo, I., & Shih, P. C. (2005). Memory span and general intelligence: a latent-variable approach. Intelligence, 33, 623–642.

    Article  Google Scholar 

  • Colom, R., Rebollo, I., Palacios, A., Juan-Espinosa, M., & Kyllonen, P. C. (2004). Working memory is (almost) perfectly predicted by g. Intelligence, 32, 277–296.

    Article  Google Scholar 

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, general fluid intelligence. Intelligence, 30, 163–183.

    Article  Google Scholar 

  • Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123, 354–373.

    Article  Google Scholar 

  • Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. N. (2007). Variation in working memory: An introduction. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 3–17). Oxford: Oxford University Press.

    Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2006). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin and Review, 12, 769–786.

    Article  Google Scholar 

  • Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523.

    Article  PubMed  Google Scholar 

  • Cosmides, L., & Tooby, J. (1994). Origins of domain specificity: The evolution of functional organization. In L. A. G. S. A. Hirschfeld (Ed.), Mapping the mind: Domain specificity in cognition and culture (pp. 85–116). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, their mutual constraints within the human information processing system. Psychological Bulletin, 104, 163–191.

    Article  PubMed  Google Scholar 

  • Cowan, N. (1995). Attention and memory: An integrated framework. Oxford Psychology Series, No. 26. New York: Oxford University Press

    Google Scholar 

  • Cowan, N. (2005a). Working memory capacity. Hove, East Sussex: Psychology Press.

    Book  Google Scholar 

  • Cowan, N. (2005b). Understanding intelligence: A summary and an adjustable-attention hypothesis. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 469–488). Thousand Oaks: Sage Publications.

    Chapter  Google Scholar 

  • Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., et al. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.

    Article  PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Daneman, M., & Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bulletin and Review, 3, 422–433.

    Article  Google Scholar 

  • De Neys, W., Schaeken, W., & d’Ydewalle, D. (2005). Working memory and counterexample retrieval for causal conditionals. Thinking and Reasoning, 11, 123–150.

    Article  Google Scholar 

  • Elman, J. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 71–99.

    Article  PubMed  Google Scholar 

  • Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning Memory and Cognition, 18, 972–992.

    Article  Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control. London: Cambridge Press.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short term memory and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309–331.

    Article  Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.

    Article  PubMed  Google Scholar 

  • Evans, J.St.B.T. (2002). Logic and human reasoning: An assessment of the deduction paradigm. Psychological Bulletin, 128, 978–996.

    Google Scholar 

  • Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent-variable analysis. Journal of Experimental Psychology: General, 133, 101–135.

    Article  Google Scholar 

  • García-Madruga, J. A., Moreno, S., Carriedo, N., Gutiérrez, F., & Johnson-Laird, P. N. (2001). Are conjunctive inferences easier than disjunctive inferences? A comparison of rules and models. Quarterly Journal of Experimental Psychology, 54A, 613–632.

    Google Scholar 

  • Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40, 177–190.

    Article  PubMed  Google Scholar 

  • Goel, V., Buchel, C., Frith, C., & Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage, 12, 504–514.

    Article  PubMed  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.

    Article  PubMed  Google Scholar 

  • Green, A. E., Fugelsang, J. A., Kraemer, D. J., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096, 125–137.

    Article  PubMed  Google Scholar 

  • Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in Wason’s selection task. British Journal of Psychology, 73, 407–420.

    Article  Google Scholar 

  • Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental and cognitive psychology. Behavioral and Brain Sciences, 21, 803–831.

    PubMed  Google Scholar 

  • Heitz, R. P., Unsworth, N., & Engle, R. W. (2005). Working memory capacity, attention control, and fluid intelligence. In O. Wilhelm, R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 61–78). Thousand Oaks: Sage Publications

    Google Scholar 

  • Hertwig, R., & Todd, P. M. (2003). More is not always better: The benefits of cognitive limits. In L. Macchi & D. Hardman (Eds.), The psychology of reasoning and decision making: A handbook. Chichester: Wiley.

    Google Scholar 

  • Holyoak, K. J., & Nisbett, R. E. (1988). Induction. In R. J. Sternberg & E. E. Smith (Eds.), The psychology of thinking (pp. 50–91). Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge: Cambridge University Press.

    Google Scholar 

  • Johnson-Laird, P. N. (1994). Mental models and probabilistic thinking. Cognition, 50, 189–209.

    Article  PubMed  Google Scholar 

  • Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hove, Sussex: Erlbaum.

    Google Scholar 

  • Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 66–71.

    Article  PubMed  Google Scholar 

  • Kareev, Y. (1995). Through a narrow window: Working memory capacity and the detection of covariation. Cognition, 56, 263–269.

    Article  PubMed  Google Scholar 

  • Klauer, K. C., Stegmaier, R., & Meiser, T. (1997). Working memory involvement in propositional and spatial reasoning. Thinking and Reasoning, 3, 9–47.

    Article  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity? Intelligence, 14, 389–433.

    Article  Google Scholar 

  • Mac Gregor, J. N. (1987). Short-term memory capacity: Limitation or optimization? Psychological Review, 94(1), 107–108.

    Article  Google Scholar 

  • Markovits, H., Doyon, C., & Simoneau, M. (2002). Individual differences in working memory and conditional reasoning with concrete and abstract content. Thinking and Reasoning, 8, 97–107.

    Article  Google Scholar 

  • Mayes, J. T. (1988). On the nature of echoic persistence: Experiments with running memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 14, 278–288.

    Article  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997a). A computational theory of executive control processes and human multiple-task performance: Part 1. Basic mechanisms. Psychological Review, 104, 3–65.

    Article  PubMed  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997b). A computational theory of executive control processes and human multiple-task performance: Part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104, 749–791.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  PubMed  Google Scholar 

  • Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt. Rinehart and Winston.

    Book  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex ‘‘frontal lobe’’ tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Miyake, A., & Shah, P. (Eds.). (1999). Models of working memory: Mechanisms of active maintenance and executive control. London: Cambridge Press.

    Google Scholar 

  • Munakata, Y., Morton, J. B., & O’Reilly, R. C. (2007). Computational and developmental approaches to variation in working memory. In R. A. Conway, C. Jarrold, M. Kane, A. Miyake, & J. Towse (Eds.), Variation in working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Nęcka, E., & Orzechowski, J. (2005). Higher-order cognition and intelligence. In R. Sternberg & J. Pretz (Eds.), Cognition and intelligence: Identifying the mechanisms of the mind (pp. 122–141). Cambridge: Cambridge University Press.

    Google Scholar 

  • Oberauer, K. (2005). The measurement of working memory capacity. In O. Wilhelm & R. W. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 393–408). Thousand Oaks: Sage Publications.

    Chapter  Google Scholar 

  • Oberauer, K., Lange, E., & Engle, R. W. (2004). Working memory capacity and resistance to interference. Journal of Memory and Learning, 51, 80–96.

    Google Scholar 

  • Oberauer, K., Shulze, R., Wilhelm, O., & Süß, H. M. (2005). Working memory and intelligence – their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 61–65.

    Article  PubMed  Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49–75). Oxford: Oxford University Press.

    Google Scholar 

  • Oberauer, K., Süß, H. M., Wilhelm, O., & Wittman, W. W. (2003). The multiple facets of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193.

    Article  Google Scholar 

  • Portrat, S., Barrouillet, P., & Camos, V. (2006). Time-related decay or interference-based forgetting in working memory? Journal of Experimental Psychology: Learning Memory and Cognition, 34(6), 1561–1564.

    Article  Google Scholar 

  • Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neuronal substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices test. Cognitive Psychology, 33, 43–63.

    Article  PubMed  Google Scholar 

  • Raven, J. C., Court, J. H., & Raven, J. (1983). Manual for Raven’s progressive matrices and vocabulary scales (section 4, advanced progressive matrices). London: H.K. Lewis.

    Google Scholar 

  • Rips, L. J. (1994a). Deductive reasoning. In R. J. Sternberg (Ed.), Handbook of perception and cognition: Thinking and problem solving (pp. 149–178). New York: Cambridge University Press.

    Google Scholar 

  • Rips, L. J. (1994b). The psychology of proof: Deductive reasoning in human reasoning. Cambridge: MIT Press.

    Google Scholar 

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.

    Article  PubMed  Google Scholar 

  • Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125, 4–27.

    Article  Google Scholar 

  • Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23, 645–665.

    Article  PubMed  Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Stoltzfus, E. R., Hasher, L., & Zacks, R. T. (1996). Working memory and aging: Current status of the inhibitory view. In J. T. E. Richardson, R. W. Engle, L. Hasher, R. H. Logie, E. R. Stoltzfus, & R. T. Zacks (Eds.), Counterpoints in cognition: Working memory and human cognition (pp. 66–68). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Süß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working memory capacity explains reasoning ability – and a little bit more. Intelligence, 30, 261–288.

    Article  Google Scholar 

  • Toms, M., Morris, N., & Ward, D. (1993). Working memory and conditional reasoning. The Quarterly Journal of Experimental Psychology, 46A, 679–699.

    Google Scholar 

  • Tooby, J., & Cosmides, L. (1990). The past explains the present: Emotional adaptations and the structure of ancestral environments. Ethnology and Sociobiology, 11, 375–424.

    Article  Google Scholar 

  • Towse, J. N., Hitch, G. J., & Hutton, U. (2000). On the interpretation of working memory span in adults. Memory and Cognition, 28(3), 341–348.

    Article  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Working memory capacity: An individual differences approach. Journal of Memory and Language, 28, 127–154.

    Article  Google Scholar 

  • Unsworth, N., & Engle, R. W. (2005). Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven. Intelligence, 33, 67–81.

    Article  Google Scholar 

  • Vandierendonck, A., Dierckx, V., & De Vooght, G. (2004). Mental model construction in linear reasoning: Evidence for the construction of initial annotated models. The Quarterly Journal of Experimental Psychology, 57A, 1369–1391.

    Google Scholar 

  • Wilhelm, O. (2005). Measuring reasoning ability. In O. Wilhelm, & R. W. Engle (Eds.), Understanding and measuring intelligence (pp. 373–392). London: Sage.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Orzechowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Orzechowski, J. (2010). Working Memory Capacity and Individual Differences in Higher-Level Cognition. In: Gruszka, A., Matthews, G., Szymura, B. (eds) Handbook of Individual Differences in Cognition. The Springer Series on Human Exceptionality. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1210-7_21

Download citation

Publish with us

Policies and ethics