Skip to main content

Trait and State Differences in Working Memory Capacity

  • Chapter
  • First Online:
Handbook of Individual Differences in Cognition

Part of the book series: The Springer Series on Human Exceptionality ((SSHE))

Abstract

Everyday, we use the limited resources of working memory (WM) across situations. For example, we use them as we drive to work attempting to create and maintain a list of tasks and meetings for the day. In this situation, imagine that an unexpected phone call informs us that two meetings have been rescheduled: a first one for a different time today and a second one for tomorrow. After receiving this message, we attempt to update our newly created task list within WM to incorporate the new meeting times. At the same time, we resist interference from the new information we have received from the recent phone call and from other thoughts that this call has brought to mind. Bear in mind that all this happens while we are driving a car, a task that is entirely different from creating, maintaining, and updating our schedule for the day. Some of us manage these tasks simultaneously without much effort, whereas some of us cannot perform this sequence successfully, forgetting half of today’s tasks or making the wrong turn. To complicate this picture, individual differences in managing information in WM partly stem from temporary states of mind that influence a successful management of the task at hand. Let us imagine that the driver had to prepare a talk for one of today’s meetings and spent the whole night preparing. In addition, she might have had an argument with her spouse in the morning. Thus, she might have experienced sleep deprivation, stress, anxiety, and fatigue, which are additional factors that often worsen our ability to utilize WM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For extended discussion concerning alternative hypotheses of what might cause individual differences in WMC, see Engle and Kane (2004) and Engle et al. (1992).

  2. 2.

    We thank the editors to point that out.

  3. 3.

    Interested readers are directed to Wilhelm and Engle (2005; see also Shamosh et al., 2008; Wright et al., 2000).

References

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–375.

    Google Scholar 

  • Altgassen, M., Phillips, L., Kopp, U., & Kliegel, M. (2007). Role of working memory components in planning performance of individuals with Parkinson’s disease. Neuropsychologia, 45, 2393–2397.

    PubMed  Google Scholar 

  • Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31, 615–624.

    PubMed  Google Scholar 

  • Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology. General, 130, 224–237.

    PubMed  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–89). New York: Academic.

    Google Scholar 

  • Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49A, 5–18.

    Google Scholar 

  • Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. Annual Reviews of Clinical Psychology, 1, 321–353.

    Google Scholar 

  • Barch, D. M. (2006). What can research on schizophrenia tell us about the cognitive neuroscience of working memory? Neuroscience, 139, 73–84.

    PubMed  Google Scholar 

  • Barkley, R. A. (2001). The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychology Review, 11, 1–29.

    PubMed  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled performance: what governs choking under pressure? Journal of Experimental Psychology. General, 130, 701–725.

    PubMed  Google Scholar 

  • Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail. Working memory and “choking under pressure” in math. Psychological Science, 16, 101–105.

    PubMed  Google Scholar 

  • Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the fragility of performance: choking under pressure in mathematical problem solving. Journal of Experimental Psychology. General, 133, 584–600.

    PubMed  Google Scholar 

  • Beilock, S. L., & DeCaro, M. S. (2007). From poor performance to success under stress: working memory, strategy selection, and mathematical problem solving under pressure. Journal of Experimental Psychology. Learning, Memory, & Cognition, 33, 983–998.

    Google Scholar 

  • Beilock, S. L., Jellison, W. A., Rydell, R. J., McConnell, A. R., & Carr, T. H. (2006). On the causal mechanisms of stereotype threat: can skills that don’t rely heavily on working memory still be threatened? Personality and Social Psychology Bulletin, 32, 1059–1071.

    PubMed  Google Scholar 

  • Beilock, S. L., Rydell, R. J., & McConnell, A. R. (2007). Stereotype threat and working memory: mechanisms, alleviation, and spillover. Journal of Experimental Psychology. General, 136, 256–276.

    PubMed  Google Scholar 

  • Belleville, S., Chertkow, H., & Gauthier, S. (2007). Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology, 21, 458–469.

    PubMed  Google Scholar 

  • Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nature Neuroscience, 7, 184–188.

    PubMed  Google Scholar 

  • Blasi, G., Mattay, V. S., Bertolino, A., Elvevag, B., Callicott, J. H., Das, S., et al. (2005). Effect of Catchol-0-Methyltransferase val 158 met genotype on attentional control. The Journal of Neuroscience, 25, 5038–5045.

    PubMed  Google Scholar 

  • Borkovec, T. D., & Inz, I. (1990). The nature of worry in generalized anxiety disorder: a predominance of thought activity. Behavior Research and Therapy, 28, 153–158.

    Google Scholar 

  • Borkovec, T. D., Lyonfields, J. D., Wiser, S. L., & Diehl, I. (1993). The role of worrisome thinking in the suppression of cardiovascular response to phobic imagery. Behavior Research and Therapy, 31, 321–324.

    Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    PubMed  Google Scholar 

  • Braver, T. S., Barch, D. M., & Gray, J. R. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825–836.

    PubMed  Google Scholar 

  • Brewin, C. R., & Beaton, A. (2002). Thought suppression, intelligence, and working memory capacity. Behaviour Research and Therapy, 40, 923–930.

    PubMed  Google Scholar 

  • Brewin, C. R., & Smart, L. (2005). Working memory capacity and suppression of intrusive thoughts. Journal of Behavior Therapy and Experimental Psychiatry, 36, 61–68.

    PubMed  Google Scholar 

  • Brown, J. A. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21.

    Google Scholar 

  • Bunting, M. (2006). Proactive interference and item similarity in working memory. Journal of Experimental Psychology. Learning, Memory, & Cognition, 32, 183–196.

    Google Scholar 

  • Bush, G., Whalen, P. J., Rosen, B. P., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: an interference task specialized for functional neuroimaging – validation study with functional MRI. Human Brain Mapping, 6, 270–282.

    PubMed  Google Scholar 

  • Casement, M. D., Broussard, J. L., Mullington, J. M., & Press, D. Z. (2006). The contribution of sleep to improvement in working memory scanning speed: a study of prolonged sleep restriction. Biological Psychology, 72, 208–212.

    PubMed  Google Scholar 

  • Caseras, X., Mataix-Cols, D., Giampietro, V., Rimes, K. S., Ntsmmrt, M., Zelaya, F., et al. (2006). Probing the working memory system in chronic fatigue syndrome: a functional magnetic resonance imaging study using the n-back task. Psychosomatic Medicine, 68, 947–955.

    PubMed  Google Scholar 

  • Chajut, E., & Algom, D. (2003). Selective attention improves under stress: implications for theories of social cognition. Journal of Personality and Social Psychology, 85, 231–248.

    PubMed  Google Scholar 

  • Chee, M. W., & Choo, W. C. (2004). Functional imaging of working memory after 24h of sleep deprivation. The Journal of Neuroscience, 24, 4560–4567.

    PubMed  Google Scholar 

  • Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cognitive Brain Research, 25, 607–623.

    PubMed  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25, 975–979.

    Google Scholar 

  • Colflesh, G. J. H., & Conway, A. R. A. (2007). Individual differences in working memory capacity and divided attention in dichotic listening. Psychonomic Bulletin and Review, 14, 699–703.

    PubMed  Google Scholar 

  • Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: a resource-dependent inhibition model. Journal of Experimental Psychology. General, 123, 354–373.

    PubMed  Google Scholar 

  • Conway, A. R. A., & Engle, R. W. (1996). Individual differences in working memory capacity: more evidence for a general capacity theory. Memory, 4, 577–590.

    PubMed  Google Scholar 

  • Conway, A. R. A., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: the importance of working memory capacity. Psychonomic Bulletin and Review, 8, 331–335.

    PubMed  Google Scholar 

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183.

    Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. E. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonomic Bulletin and Review, 12, 769–786.

    PubMed  Google Scholar 

  • Conway, A. R. A., Tuholski, S. W., Shisler, R. J., & Engle, R. W. (1999). The effect of memory load on negative priming: an individual differences investigation. Memory and Cognition, 27, 1042–1050.

    Google Scholar 

  • Cools, R., Barker, R. A., Sahakian, B. J., & Robbins, T. W. (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cerebral Corex, 11, 1136–1143.

    Google Scholar 

  • Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. The Journal of Neuroscience, 28, 1208–1212.

    PubMed  Google Scholar 

  • Cowan, N. (1988). Evolving concepts of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104, 103–191.

    Google Scholar 

  • Cowan, N. (1997). Attention and memory. An integrated framework (Oxford Psychology Series 26). New York: Oxford University Press.

    Google Scholar 

  • Crawford, T. J., Higham, S., Renvoize, T., Patel, J., Dale, M., Suriya, A., et al. (2005). Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biological Psychiatry, 57, 1052–1060.

    PubMed  Google Scholar 

  • Croizet, J. C., Despres, G., Gauzins, M. E., Huguet, P., Leyens, J. P., & Meot, A. (2004). Stereotype threat undermines intellectual performance by triggering a disruptive mental load. Personality and Social Psychology Bulletin, 30, 721–731.

    PubMed  Google Scholar 

  • D’Esposito, M., Onishi, K., Thompson, H., Robinson, K., Armstrong, C., & Grossman, M. (1996). Working memory impairments in multiple sclerosis: evidence from a dual-task paradigm. Neuropsychology, 10, 51–56.

    Google Scholar 

  • Dahlin, E., Stigsdotter Nelly, A., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the straitum. Science, 320, 1510–1512.

    PubMed  Google Scholar 

  • Dalgleish, T., Williams, J. M. G., Golden, A. J., Perkins, N., Feldman Barrett, L., Barnard, P. J., et al. (2007). Reduced specificity of autobiographical memory and depression: the role of the executive control. Journal of Experimental Psychology. General, 136, 23–42.

    PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 459–466.

    Google Scholar 

  • Daneman, M., & Green, I. (1986). Individual differences in comprehending and producing words in context. Journal of Memory and Language, 25, 1–8.

    Google Scholar 

  • De Pisapia, N., Slomski, J. A., & Braver, T. S. (2007). Functional specializations in lateral prefrontal cortex associated with the integration and segregation of information in working memory. Cerebral Cortex, 17, 993–1006.

    PubMed  Google Scholar 

  • Diamond, A. (2005). Attention-deficit disorder (attention-deficit/hyperactivity disorder without hyperactivity): a neurobiologically and behaviorally distinct disorder from attention-deficit/hyperactivity disorder (with hyperactivity). Development and Psychopathology, 17, 807–825.

    PubMed  Google Scholar 

  • DiMaio, S., Grizenko, N., & Joober, R. (2003). Dopamine genes and attention-deficit hyperactivity disorder: a review. Journal of Psychiatry Neuroscience, 28, 27–38.

    PubMed  Google Scholar 

  • Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. The Journal of Neuroscience, 26, 2072–2079.

    PubMed  Google Scholar 

  • Engle, R. W. (2001). What is working-memory capacity? In H. L. Roediger III & J. S. Nairne (Eds.), The nature of remembering: essays in honor of Robert G. Crowder (pp. 297–314). Washington, DC: American Psychological Association.

    Google Scholar 

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23.

    Google Scholar 

  • Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. In B. Ross (Ed.), The Psychology of Learning and Motivation (Vol. 44, pp. 145–199). New York: Elsevier.

    Google Scholar 

  • Engle, R. W., Cantor, J., & Carullo, J. (1992). Individual differences in working memory and comprehension: a test of four hypotheses. Journal of Experimental Psychology. Learning, Memory and Cognition, 18, 972–992.

    Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 102–134). London: Cambridge Press.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory and general fluid intelligence: a latent variable approach. Journal of Experimental Psychology. General, 128, 309–331.

    PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16, 143–149.

    Google Scholar 

  • Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci USA, 100, 7406–7411.

    PubMed  Google Scholar 

  • Feldman Barrett, L., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of mind. Psychollogical Bulletin, 130, 553–573.

    Google Scholar 

  • Forster, S., & Lavie, N. (2007). High perceptual load makes everybody equal. Psychological Science, 18, 377–381.

    PubMed  Google Scholar 

  • Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., et al. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14–25.

    PubMed  Google Scholar 

  • de Frias, C. M., Annerbrink, K., Westberg, L., Erikkson, E., Adolfsson, R., & Nilsson, G. (2005). Catchol-O-methyltransferase val158met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 1018–1025.

    PubMed  Google Scholar 

  • Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of Experimental Psychology. General, 133, 101–135.

    PubMed  Google Scholar 

  • Gathercole, S. E., & Alloway, T. P. (2006). Practitioner review: short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. Journal of Child Psychology and Psychiatry, 47, 4–15.

    PubMed  Google Scholar 

  • Gauggel, S., & Billino, J. (2002). The effects of goal setting on the arithmetic performance of brain-damaged patients. Archives of Clinical Neuropsychology, 17, 283–294.

    PubMed  Google Scholar 

  • Gibbs, S. E. B., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective and Behavioral Neuroscience, 5, 212–221.

    PubMed  Google Scholar 

  • Giesbrecht, T., Smeets, T., Leppink, J., Jelicic, M., & Merckelbach, H. (2007). Acute dissociation after 1 night of sleep loss. Journal of Abnormal Psychology, 116, 599–606.

    PubMed  Google Scholar 

  • Glatt, C. E., & Freimer, N. B. (2002). Association analysis of candidate genes for neuropsychiatric disease: the perpetual campaign. Trends in Genetics, 18, 307–312.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Architecture of the prefrontal cortex and the central executive. Annals of the New York Academy of Sciences, 769, 71–83.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational knowledge. In F. Plum & V. Mountcastle (Eds.), Handbook of physiology (Vol. 5, pp. 373–417). Bethesda, MD: APS.

    Google Scholar 

  • Goldman-Rakic, P. S., Muly, E. C., III, & Williams, G. V. (2000). D(1) receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295–301.

    PubMed  Google Scholar 

  • Gross, J. J., & Levenson, R. W. (1997). Hiding feelings: the acute effects of inhibiting negative and positive emotion. Journal of Abnormal Psychology, 106, 95–103.

    PubMed  Google Scholar 

  • Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18, 1279–1296.

    PubMed  Google Scholar 

  • Harrison, Y., & Horne, J. A. (2000). The impact of sleep deprivation on decision making: a review. Journal of Experimental Psychology. Applied, 6, 236–249.

    PubMed  Google Scholar 

  • Harrison, Y., Horne, J. A., & Rothwell, A. (2000). Prefrontal neuropsychological effects of sleep deprivation in young adults – a model of healthy aging? Sleep, 23, 1067–1073.

    PubMed  Google Scholar 

  • Hartlage, S., Alloy, L. B., Vazquez, C., & Dykman, B. (1993). Automatic and effortful processing in depression. Psychological Bulletin, 113, 247–278.

    PubMed  Google Scholar 

  • Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: a review and a new view. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193–225). New York: Academic Press.

    Google Scholar 

  • Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology. General, 136, 217–240.

    PubMed  Google Scholar 

  • Hester, R., & Garavan, H. (2005). Working memory and executive function: the influence of content and load on the control of attention. Memory and Cognition, 33, 221–233.

    Google Scholar 

  • Hockey, G. R. (1997). Compensatory control in the regulation of human performance under stress and high workload: a cognitive-energetical framework. Biological Psychology, 45, 73–93.

    PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., & Nirkko, A. C. (2007). On how high performers keep cool brains in situations of cognitive overload. Cognitive, Affective and Behavioral Neuroscience, 7, 75–89.

    PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA, 105, 6829–6833.

    PubMed  Google Scholar 

  • Jaeggi, S.M., Seewer, R., Nirkko, A.C., Eckstein D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage, 19, 210–225.

    PubMed  Google Scholar 

  • Johnson, W. (2007). Genetic and environmental influences on behavior: capturing all the interplay. Psychological Review, 114, 423–440.

    PubMed  Google Scholar 

  • Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.

    PubMed  Google Scholar 

  • Jonides, J., Schumacher, E. G., Smith, E. E., Lauber, E., Awh, E., Minoshima, S., et al. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention: limits on long-term memory retrieval. Journal of Experimental Psychology. Learning, Memory and Cognition, 26, 336–358.

    Google Scholar 

  • Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual differences perspective. Psychonomic Bulletin and Review, 9, 637–671.

    PubMed  Google Scholar 

  • Kane, M. J., & Engle, R. W. (2003). Working memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology. General, 132, 47–70.

    PubMed  Google Scholar 

  • Kane, M. J., Bleckley, K. M., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology. General, 130, 169–183.

    PubMed  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology. General, 133, 189–217.

    PubMed  Google Scholar 

  • Kellendonk, C., Simpson, E. H., Polan, H. J., Malleret, G., Vronskaya, S., Winiger, V., et al. (2006). Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron, 49, 603–615.

    PubMed  Google Scholar 

  • Kensinger, E. A., & Corkin, S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion, 3, 378–393.

    PubMed  Google Scholar 

  • Keogh, E., & French, C. C. (2001). Test anxiety, evaluative stress, and susceptibility to distraction from threat. European Journal of Personality, 15, 123–141.

    Google Scholar 

  • Keppel, G., & Underwood, B. J. (1962). Proactive inhibition in short-term retention of single items. Journal of Verbal Learning and Verbal Behavior, 1, 153–161.

    Google Scholar 

  • Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate, conflict monitoring, and adjustments in control. Science, 303, 1023–1026.

    PubMed  Google Scholar 

  • Kiewra, K. A., & Benton, S. L. (1988). The relationship between information-processing ability and notetaking. Contemporary Educational Psychology, 13, 33–44.

    Google Scholar 

  • Killgore, W. D. S., Balkin, T. J., & Wesensten, N. J. (2006). Impaired decision making following 49h of sleep deprivation. Journal of Sleep Research, 15, 7–13.

    PubMed  Google Scholar 

  • Kimberg, D. Y., & D’Esposito, M. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Cognitive Neuroreport, 8, 3581–3585.

    Google Scholar 

  • Kimberg, D. Y., & D’Esposito, M. (2003). Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia, 41, 1020–1027.

    PubMed  Google Scholar 

  • King, J., & Just, M. A. (1991). Individual differences in syntactic processing: the role of working memory. Journal of memory and Language, 30, 580–602.

    Google Scholar 

  • Klein, K., & Boals, A. (2001). The relationship of life event stress and working memory capacity. Applied Cognitive Psychology, 15, 565–579.

    Google Scholar 

  • Klein, K., & Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task. Behavior Research Methods, Instruments and Computers, 31, 429–432.

    Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD – a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.

    PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24, 781–791.

    PubMed  Google Scholar 

  • Knecht, S., Breitenstein, C., Bushuven, S., Wailke, S., Kamping, S., Flöel, A., et al. (2004). Levodopa: faster and better word learning in normal humans. Annals of Neurology, 56, 20–26.

    PubMed  Google Scholar 

  • Kodama, T., Hikosaka, K., & Watanabe, M. (2002). Differential changes in glutamate concentration in the primate prefrontal cortex during spatial delayed alternation and sensory-guided tasks. Experimental Brain Research, 145, 133–141.

    Google Scholar 

  • Krendl, A. C., Richeson, J. A., Kelley, W. M., & Heatherton, T. F. (2008). The negative consequences of threat – a functional magnetic resonance imaging investigation of the neural mechanisms underlying women’s underperformance in math. Psychological Science, 19, 168–175.

    PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working memory capacity?! Intelligence, 14, 389–433.

    Google Scholar 

  • Kyllonen, P. C., & Stephens, D. L. (1990). Cognitive abilities as determinants of success in acquiring logic skill. Learning and Individual Differences, 2, 129–160.

    Google Scholar 

  • Lavric, A., Rippon, G., & Gray, J. R. (2003). Threat-evoked anxiety disrupts spatial working memory performance: an attentional account. Cognitive Therapy and Research, 27, 489–504.

    Google Scholar 

  • Lee, K.H., Choi, Y.Y., Gray, J.R., Cho, S.H., Chae, J-H., Lee, S., & Kim, K. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. Neuroimage, 29, 578–586.

    PubMed  Google Scholar 

  • Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory and Cognition, 7, 166–174.

    Google Scholar 

  • Lorist, M. M., Boksem, M. A. S., & Ridderinkhof, K. R. (2005). Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognitive Brain Research, 24, 199–205.

    PubMed  Google Scholar 

  • Luciano, M., Wright, M. J., Smith, G. A., Geffen, G. M., Geffen, L. B., & Martin, N. G. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behavior Genetics, 6, 581–592.

    Google Scholar 

  • Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology. General, 130, 199–207.

    PubMed  Google Scholar 

  • MacDonald, A. W., III, Carter, C. S., Flory, J. D., Ferrell, R. E., & Manuck, S. B. (2007). COMT Val158Met and executive control: a test of the benefit of specific deficits to translational research. Journal of Abnormal Psychology, 116, 306–312.

    PubMed  Google Scholar 

  • Manor, I., Tyano, S., Eisenberg, J., Bachner-Melman, R., Kotler, M., & Ebstein, R. P. (2002). The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Molecular Psychiatry, 7, 790–794.

    PubMed  Google Scholar 

  • Mathews, A., & Mackintosh, B. (1998). A cognitive model of selective processing in anxiety. Cognitive Therapy and Research, 122, 539–560.

    Google Scholar 

  • Mathews, A., Mackintosh, B., & Fulcher, E. P. (1997). Cognitive biases in anxiety and attention to threat. Trends in Cognitive Sciences, 1, 341–346.

    Google Scholar 

  • May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory and Cognition, 27, 759–767.

    Google Scholar 

  • McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.

    PubMed  Google Scholar 

  • Mecklinger, A., Weber, K., Gunter, T. C., & Engle, R. W. (2003). Dissociable brain mechanisms for inhibitory control: effects of interference content and working memory capacity. Cognitive Brain Research, 18, 26–38.

    PubMed  Google Scholar 

  • Mehta, M. A., & Riedel, W. J. (2006). Dopaminergic enhancement of cognitive function. Current Pharmaceutical Design, 12, 2487–2500.

    PubMed  Google Scholar 

  • Meneses, A., & Perez-Garcia, G. (2007). 5-HT1A receptors and memory. Neuroscience and Behavioral Reviews, 31, 705–727.

    Google Scholar 

  • Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews. Neuroscience, 1, 59–65.

    PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Reviews of Neuroscience, 24, 167–202.

    Google Scholar 

  • Mitchell, J. P., Heatherton, T. F., Kelley, W. M., Wyland, C. L., Wegner, D. M., & McCrae, C. N. (2007). Separating sustained from transient aspects of cognitive control during thought suppression. Psychological Science, 18, 292–297.

    PubMed  Google Scholar 

  • Miyake, A., & Shah, P. (1999). Models of working memory: mechanisms of active maintenance and executive control. New York: Cambridge University Press.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  Google Scholar 

  • Moray, N. (1959). Attention in dichotic listening: affective cues and the influence of instructions. The Quarterly Journal of Experimental Psychology, 11, 59–60.

    Google Scholar 

  • Muller, J., & Roberts, J. E. (2004). Memory and attention in obsessive-compulsive disorder: a review. Anxiety Disorders, 19, 1–28.

    Google Scholar 

  • Nebel, K., Wiese, H., Seyfarth, J., Gizewski, E. R., Stude, P., Ciener, H.-C., et al. (2007). Activity of attention related structures in multiple sclerosis patients. Brain Research, 1151, 150–160.

    PubMed  Google Scholar 

  • Niemivirta, M. (1999). Motivational and cognitive predictors of goal setting and task performance. International Journal of Educational Research, 31, 499–513.

    Google Scholar 

  • Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220–246.

    PubMed  Google Scholar 

  • Nigg, J. T., Carr, L. A., Martel, M. M., & Henderson, J. M. (2007). Concepts of inhibition and developmental psychopathology. In C. MacCleod & D. Gorfein (Eds.), Inhibition in cognition (pp. 259–277). Washington, DC: American Psychological Association Press.

    Google Scholar 

  • Nolan, K. A., Bilder, R. M., Lachman, H. M., & Volavka, J. (2004). Catechol O-methyltransferase val158 met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexilibilty. American Journal of Psychiatry, 161, 359–361.

    PubMed  Google Scholar 

  • Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64.

    Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.

    Google Scholar 

  • Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology. Learning, Memory and Cognition, 32, 197–214.

    Google Scholar 

  • Oberauer, K., Süß, K.-M., Wilhelm, O., & Wittman, W. W. (2003). The multiple faces of working memory: storage, processing, supervision, and coordination. Intelligence, 31, 167–193.

    Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2003). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.

    PubMed  Google Scholar 

  • Osborne, J. W. (2007). Linking stereotype threat and anxiety. Educational Psychology, 27, 135–154.

    Google Scholar 

  • Owen, A. M. (2004). Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. The Neuroscientist, 9, 1–13.

    Google Scholar 

  • Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 51–87.

    PubMed  Google Scholar 

  • Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53, 25–38.

    PubMed  Google Scholar 

  • Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc Natl Acad Sci USA, 99, 1736–1741.

    PubMed  Google Scholar 

  • Persson, J., & Reuter-Lorenz, P. A. (2008). Gaining control: training executive function and far transfer of the ability to resolve interference. Psychological Science, 19, 881–888.

    PubMed  Google Scholar 

  • Persson, J., Welsh, K. M., Jonides, J., & Reuter-Lorenz, P. A. (2007). Cognitive fatigue of executive processes: interaction between interference resolution tasks. Neuropsychologia, 45, 1571–1579.

    PubMed  Google Scholar 

  • Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.

    PubMed  Google Scholar 

  • Petrides, M. (1996). Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philosophical Transactions of the Royal Society of London, 351, 1455–1462.

    PubMed  Google Scholar 

  • Posner, M. I., & Snyder, Ch R R. (1975). Attention and cognitive control. In R. Solso (Ed.), Information processing and cognition: the Loyola symposium. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Previc, F. H. (1999). Dopamine and the origins of human intelligence. Brain and Cognition, 41, 299–350.

    PubMed  Google Scholar 

  • Quinn, D. M., & Spencer, S. J. (2001). The interference of stereotype threat with women’s generation of mathematical problem-solving strategies. Journal of Social Issues, 57, 55–71.

    Google Scholar 

  • Redick, T. S., Heitz, R. P., & Engle, R. W. (2007). Working memory capacity and inhibition: cognitive and social consequences. In D. S. Gorfein & C. M. MacLeod (Eds.), Inhibition in cognition (pp. 125–142). Washington, DC: American Psychological Association.

    Google Scholar 

  • Reitan, R. M., & Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes. Neuropsychology Review, 4, 161–198.

    PubMed  Google Scholar 

  • Richards, J. M., & Gross, J. J. (2000). Emotion regulation and memory: the cognitive costs of keeping one’s cool. Journal of Personality and Social Psychology, 79, 410–424.

    PubMed  Google Scholar 

  • Richeson, J. A., & Shelton, J. N. (2003). When prejudice does not pay: effects of interracial contact on executive function. Psychological Science, 14, 287–290.

    PubMed  Google Scholar 

  • Richeson, J. A., Baird, A. A., Gordon, H. L., Heatherton, T. F., Wyland, C. L., Trawalter, S., et al. (2003). An fMRI investigation of the impact of interracial contact on executive function. Nature Neuroscience, 6, 1323–1328.

    PubMed  Google Scholar 

  • Rosen, V. M., & Engle, R. W. (1997). Forward and backward serial recall. Intelligence, 25, 37–47.

    Google Scholar 

  • Savitz, J., Solms, M., & Ramesar, R. (2006). The molecular genetics of cognition: dopamine, COMT and BDNF. Genes, Brain and Behavior, 5, 311–328.

    Google Scholar 

  • Schmader, T., & Johns, M. (2003). Converging evidence that stereotype threat reduces working memory capacity. Journal of Personality and Social Psychology, 85, 440–452.

    PubMed  Google Scholar 

  • Schmeichel, B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology. General, 136, 241–255.

    PubMed  Google Scholar 

  • Schneider, W., & Chein, J. M. (2003). Controlled & automatic processing: behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559.

    Google Scholar 

  • Schneider, W., & Detweiler, M. (1987). A connectionist/control architecture for working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 21, pp. 53–119). New York: Academic.

    Google Scholar 

  • Serino, A., Ciaramelli, E., Di Santantonio, A., Malagu, S., Servadei, F., & Ladavas, E. (2007). A pilot study for rehabilitation of central executive deficits after traumatic brain injury. Brain Injury, 21, 11–19.

    PubMed  Google Scholar 

  • Shackman, A. J., Sarinopoulos, I., Maxwell, J. S., Pizzagalli, D. A., Lavric, A., & Davidson, R. J. (2006). Anxiety selectively disrupts visuospatial working memory. Emotion, 6, 40–61.

    PubMed  Google Scholar 

  • Shallice, T., & Burgess, P. W. (1993). Supervisory control of action and thought selection. In A. Baddeley & L. Weiskrantz (Eds.), Attention: selection, awareness, and control: a tribute to donald broadbent (pp. 171–187). Oxford, England: Clarendon.

    Google Scholar 

  • Shamosh, N. A., DeYoung, C., Green, A. E., Reis, D. L., Johnson, M. R., Conway, A. R. A., et al. (2008). Individual differences in delay discounting. Psychological Science, 19, 904–911.

    PubMed  Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91, 269–276.

    PubMed  Google Scholar 

  • Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323.

    PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA, 95, 12061–12068.

    PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science Review, Neuroscience, 283, 1657–1661.

    Google Scholar 

  • Smith, M. E., McEvoy, L. K., & Gevins, A. (2002). The impact of moderate sleep loss on neurophysiologic signals during working memory task performance. Sleep, 25, 784–794.

    PubMed  Google Scholar 

  • Steele, C. M., & Josephs, R. A. (1990). Alcohol myopia: its prized and dangerous effects. American Psychologist, 45, 921–933.

    PubMed  Google Scholar 

  • Steinhauser, M., Maier, M., & Hübner, R. (2007). Cognitive control under stress: how stress affects strategies of task-set reconfiguration. Psychological Science, 18, 540–545.

    PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.

    Google Scholar 

  • Suhara, T., Fukuda, H., Inoue, O., Itoh, T., Suzuki, K., Yamasaki, T., et al. (1991). Age-related changes in human D1 dopamine receptors measured by positron emission tomography. Psychopharmacology, 103, 41–45.

    PubMed  Google Scholar 

  • Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38, 596–612.

    PubMed  Google Scholar 

  • Swainson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., et al. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proc Natl Acad Sci USA, 97, 4754–4759.

    Google Scholar 

  • Thorell, L. B., Lindqvist, S., Bergman, S., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 11, 969–976.

    Google Scholar 

  • Toga, A. W., & Thompson, P. M. (2005). Genetics of brain structure and intelligence. Annual Reviews of Neuroscience, 28, 1–23.

    Google Scholar 

  • Trawalter, S., & Richeson, J. A. (2006). Regulatory focus and executive function after interracial interactions. Journal of Experimental Social Psychology, 42, 406–412.

    Google Scholar 

  • Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49, 446–468.

    Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154.

    Google Scholar 

  • Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114, 104–132.

    PubMed  Google Scholar 

  • Unsworth, N., Heitz, R. P., & Engle, R. W. (2005). Working memory capacity in hot and cold cognition. In R. W. Engle, G. Sędek, U. Hecker, & D. N. McIntosh (Eds.), Cognitive limitations in aging and psychopathology (pp. 19–43). New York: Cambridge University Press.

    Google Scholar 

  • Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the antisaccade task: individual differences in voluntary saccade control. Journal of Experimental Psychology. Learning, Memory and Cognition, 30, 1302–1321.

    Google Scholar 

  • Vallat, C., Azouvi, P., Hardisson, H., Meffert, R., Tessier, C., & Pradat-Diehl, P. (2005). Rehabilitation of verbal working memory after left hemisphere stroke. Brain Injury, 19, 1157–1164.

    PubMed  Google Scholar 

  • Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: how to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology. Learning, Memory and Cognition, 30, 1322–1337.

    Google Scholar 

  • Vohs, K. D., & Heatherton, T. F. (2000). Self-regulatory failure: a resource-depletion approach. Psychological Science, 11, 249–254.

    PubMed  Google Scholar 

  • Waters, G. S., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments and Computers, 35, 550–564.

    Google Scholar 

  • Wegner, D. M. (1994). Ironic processes of mental control. Psychological Review, 101, 34–52.

    PubMed  Google Scholar 

  • Wegner, D. M., Erber, R., & Zanakos, S. (1993). Ironic processes in the mental control of mood and mood-related thought. Journal of Personality and Social Psychology, 65, 1093–1104.

    PubMed  Google Scholar 

  • Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage, 19, 1361–1368.

    PubMed  Google Scholar 

  • Wenzlaff, R. M., Wegner, D. M., & Roper, D. W. (1988). Depression and mental control: the resurgence of unwanted negative thoughts. Journal of Personality and Social Psychology, 55, 882–892.

    PubMed  Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory – a single-subject analysis. Physiology and Behavior, 92, 186–192.

    PubMed  Google Scholar 

  • Westernberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.-L., Bartfai, A., et al. (2007). Computerized working memory training after stroke – a pilot study. Brain Injury, 21, 21–29.

    Google Scholar 

  • Whitmer, A. J., & Banich, M. T. (2007). Inhibition versus switching deficits in different forms of rumination. Psychological Science, 18, 546–553.

    PubMed  Google Scholar 

  • Wilhelm, O., & Engle, R. W. (2005). Handbook of understanding and measuring intelligence. CA: SAGE.

    Google Scholar 

  • Williams-Gray, C. H., Hampshire, A., Barker, R. A., & Owen, A. M. (2008). Attentional control in Parkinson’s disease is dependent on COMT val158met genotype. Brain, 131, 397–408.

    Google Scholar 

  • Williams-Gray, C. H., Hampshire, A., Robbins, T. W., Owen, A. M., & Barker, R. A. (2007). Catehol O-Methyltransferase val158met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. The Journal of Neuroscience, 27, 4832–4838.

    PubMed  Google Scholar 

  • Wright, M., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., et al. (2000). Genetics of cognition: outline of a collaborative twin study. Twin Research, 4, 48–56.

    Google Scholar 

  • Yoo, S.-S., Hu, P. T., Gujar, N., Jolesz, F. A., & Walker, M. P. (2007). A deficit in the ability to form new human memories without sleep. Nature Neuroscience, 10, 385–392.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Ilkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ilkowska, M., Engle, R.W. (2010). Trait and State Differences in Working Memory Capacity. In: Gruszka, A., Matthews, G., Szymura, B. (eds) Handbook of Individual Differences in Cognition. The Springer Series on Human Exceptionality. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1210-7_18

Download citation

Publish with us

Policies and ethics