Duchenne Cardiomyopathy Gene Therapy

  • Jin-Hong Shin
  • Brian Bostick
  • Deborah M. Fine
  • Yongping Yue
  • Dongsheng Duan


Duchenne cardiomyopathy is a heart disease resulting from the loss of cardiac dystrophin. It significantly reduces the life quality and shortens lifespan in Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD) and X-linked dilated cardiomyopathy patients and carriers. Gene replacement therapy with adeno-associated viral vector (AAV) and gene repair therapy with exon skipping hold great promise for restoring dystrophin expression and ameliorating cardiomyopathy. The last few years have witnessed tremendous advances towards Duchenne cardiomyopathy gene therapy. The infrastructure (animal models and functional assays) is now available for comprehensive preclinical studies. Essential parameters, such as the therapeutic threshold, have also been defined. Together with the recent developments in novel AAV vectors and modified antisense oligonucleotides, clinical application of Duchenne cardiomyopathy gene therapy may become a reality in the near future.


Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Patient Dystrophin Gene Becker Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research on Duchenne muscular dystrophy in Duan lab is supported by grants from the National Institutes of Health AR-49419, AR-57209 and NS-62934 (DD) and the Muscular Dystrophy Association (DD).


  1. Abmayr, S., Gregorevic, P., Allen, J.M., and Chamberlain, J.S. (2005). Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Mol Ther 12, 441–450.PubMedCrossRefGoogle Scholar
  2. Ahn, A.H., and Kunkel, L.M. (1993). The structural and functional diversity of dystrophin. Nat Genet 3, 283–291.PubMedCrossRefGoogle Scholar
  3. Allocca, M., Doria, M., Petrillo, M., Colella, P., Garcia-Hoyos, M., Gibbs, D., Kim, S.R., Maguire, A., Rex, T.S., Di Vicino, U., et al. (2008). Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118, 1955–1964.PubMedCrossRefGoogle Scholar
  4. Alter, J., Lou, F., Rabinowitz, A., Yin, H., Rosenfeld, J., Wilton, S.D., Partridge, T.A., and Lu, Q.L. (2006). Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12, 175–177.PubMedCrossRefGoogle Scholar
  5. American Academy of Pediatrics. (2005). Cardiovascular health supervision for individuals affected by Duchenne or Becker muscular dystrophy. Pediatrics 116, 1569–1573.Google Scholar
  6. Angelini, C., Fanin, M., Freda, M.P., Martinello, F., Miorin, M., Melacini, P., Siciliano, G., Pegoraro, E., Rosa, M., and Danieli, G.A. (1996). Prognostic factors in mild dystrophinopathies. J Neurol Sci 142, 70–78.PubMedCrossRefGoogle Scholar
  7. Arahata, K., Ishihara, T., Kamakura, K., Tsukahara, T., Ishiura, S., Baba, C., Matsumoto, T., Nonaka, I., and Sugita, H. (1989). Mosaic expression of dystrophin in symptomatic carriers of Duchenne’s muscular dystrophy. N Engl J Med 320, 138–142.PubMedCrossRefGoogle Scholar
  8. Beggs, A.H., Hoffman, E.P., Snyder, J.R., Arahata, K., Specht, L., Shapiro, F., Angelini, C., Sugita, H., and Kunkel, L.M. (1991). Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet 49, 54–67.PubMedGoogle Scholar
  9. Blake, D.J., Weir, A., Newey, S.E., and Davies, K.E. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82, 291–329.PubMedGoogle Scholar
  10. Blankinship, M.J., Gregorevic, P., and Chamberlain, J.S. (2006). Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated viral vectors. Mol Ther 13, 241–249.PubMedCrossRefGoogle Scholar
  11. Bostick, B., Ghosh, A., Yue, Y., Long, C., and Duan, D. (2007). Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 14, 1605–1609.PubMedCrossRefGoogle Scholar
  12. Bostick, B., Yue, Y., Lai, Y., Long, C., Li, D., and Duan, D. (2008a). Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum Gene Ther 19, 851–856.PubMedCrossRefGoogle Scholar
  13. Bostick, B., Yue, Y., Long, C., and Duan, D. (2008b). Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression. Circ Res 102, 121–130.PubMedCrossRefGoogle Scholar
  14. Bostick, B., Yue, Y., Long, C., Marschalk, N., Fine, D.M., Chen, J., and Duan, D. (2009). Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice. Mol Ther 17, 253–261.PubMedCrossRefGoogle Scholar
  15. Bridges, L.R. (1986). The association of cardiac muscle necrosis and inflammation with the degenerative and persistent myopathy of MDX mice. J Neurol Sci 72, 147–157.PubMedCrossRefGoogle Scholar
  16. Brockmeier, K., Schmitz, L., von Moers, A., Koch, H., Vogel, M., and Bein, G. (1998). X-chromosomal (p21) muscular dystrophy and left ventricular diastolic and systolic function. Pediatr Cardiol 19, 139–144.PubMedCrossRefGoogle Scholar
  17. Bulfield, G., Siller, W.G., Wight, P.A., and Moore, K.J. (1984). X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81, 1189–1192.PubMedCrossRefGoogle Scholar
  18. Bushby, K., Muntoni, F., and Bourke, J.P. (2003). 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th–9th June 2002, Naarden, the Netherlands. Neuromuscul Disord 13, 166–172.Google Scholar
  19. Chamberlain, J.S., Metzger, J., Reyes, M., Townsend, D., and Faulkner, J.A. (2007). Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. Faseb J 21, 2195–2204.PubMedCrossRefGoogle Scholar
  20. Chetboul, V., Carlos, C., Blot, S., Thibaud, J.L., Escriou, C., Tissier, R., Retortillo, J.L., and Pouchelon, J.L. (2004a). Tissue Doppler assessment of diastolic and systolic alterations of radial and longitudinal left ventricular motions in Golden Retrievers during the preclinical phase of cardiomyopathy associated with muscular dystrophy. Am J Vet Res 65, 1335–1341.PubMedCrossRefGoogle Scholar
  21. Chetboul, V., Escriou, C., Tessier, D., Richard, V., Pouchelon, J.L., Thibault, H., Lallemand, F., Thuillez, C., Blot, S., and Derumeaux, G. (2004b). Tissue Doppler imaging detects early asymptomatic myocardial abnormalities in a dog model of Duchenne’s cardiomyopathy. Eur Heart J 25, 1934–1939.PubMedCrossRefGoogle Scholar
  22. Chu, V., Otero, J.M., Lopez, O., Sullivan, M.F., Morgan, J.P., Amende, I., and Hampton, T.G. (2002). Electrocardiographic findings in mdx mice: a cardiac phenotype of Duchenne muscular dystrophy. Muscle Nerve 26, 513–519.PubMedCrossRefGoogle Scholar
  23. Clemens, P.R., Krause, T.L., Chan, S., Korb, K.E., Graham, F.L., and Caskey, C.T. (1995). Recombinant truncated dystrophin minigenes: construction, expression, and adenoviral delivery. Hum Gene Ther 6, 1477–1485.PubMedCrossRefGoogle Scholar
  24. Cohen, N., and Muntoni, F. (2004). Multiple pathogenetic mechanisms in X linked dilated cardiomyopathy. Heart 90, 835–841.PubMedCrossRefGoogle Scholar
  25. Cohn, R.D., Durbeej, M., Moore, S.A., Coral-Vazquez, R., Prouty, S., and Campbell, K.P. (2001). Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan–sarcospan complex. J Clin Invest 107, R1–R7.CrossRefGoogle Scholar
  26. Cooper, B.J., Winand, N.J., Stedman, H., Valentine, B.A., Hoffman, E.P., Kunkel, L.M., Scott, M.O., Fischbeck, K.H., Kornegay, J.N., Avery, R.J., et al. (1988). The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334, 154–156.PubMedCrossRefGoogle Scholar
  27. Coulton, G.R., Morgan, J.E., Partridge, T.A., and Sloper, J.C. (1988). The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14, 53–70.PubMedCrossRefGoogle Scholar
  28. Danialou, G., Comtois, A.S., Dudley, R., Karpati, G., Vincent, G., Des Rosiers, C., and Petrof, B.J. (2001). Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. Faseb J 15, 1655–1657.PubMedGoogle Scholar
  29. Deconinck, A.E., Rafael, J.A., Skinner, J.A., Brown, S.C., Potter, A.C., Metzinger, L., Watt, D.J., Dickson, J.G., Tinsley, J.M., and Davies, K.E. (1997). Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90, 717–727.PubMedCrossRefGoogle Scholar
  30. Duan, D. (2006a). Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Genet 15 Suppl 2, R253–R261.CrossRefGoogle Scholar
  31. Duan, D. (2006b). From the smallest virus to the biggest gene: marching towards gene therapy for duchenne muscular dystrophy. Discov Med 6, 103–108.PubMedGoogle Scholar
  32. Duan, D., Yan, Z., and Engelhardt, J.F. (2006). Expanding the capacity of AAV vectors. In Parvoviruses, M.E. Bloom, S.F. Cotmore, R.M. Linden, C.R. Parrish, and J.R. Kerr, eds. (London New York, Hodder Arnold; Distributed in the U.S.A. by Oxford University Press), pp. 525–532.Google Scholar
  33. Duan, D., Yue, Y., and Engelhardt, J.F. (2001). Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4, 383–391.PubMedCrossRefGoogle Scholar
  34. Duan, D., Yue, Y., and Engelhardt, J.F. (2002). Adeno-associated virus. In Lung Biology in Health and Disease, Gene Therapy in Lung Disease, S.M. Albelda, ed. (New York, NY, Marcel Dekker Inc.), pp. 51–92.Google Scholar
  35. Emery, A.E. (1969). Abnormalities of the electrocardiogram in female carriers of Duchenne muscular dystrophy. Br Med J 2, 418–420.PubMedCrossRefGoogle Scholar
  36. England, S.B., Nicholson, L.V., Johnson, M.A., Forrest, S.M., Love, D.R., Zubrzycka-Gaarn, E.E., Bulman, D.E., Harris, J.B., and Davies, K.E. (1990). Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 343, 180–182.PubMedCrossRefGoogle Scholar
  37. Ervasti, J.M., and Sonnemann, K.J. (2008). Biology of the striated muscle dystrophin–glycoprotein complex. Int Rev Cytol 265, 191–225.PubMedCrossRefGoogle Scholar
  38. Fabb, S.A., Wells, D.J., Serpente, P., and Dickson, G. (2002). Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micro-dystrophin effectively restores the dystrophin- associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 11, 733–741.PubMedCrossRefGoogle Scholar
  39. Finsterer, J., Bittner, R.E., and Grimm, M. (1999). Cardiac involvement in Becker’s muscular dystrophy, necessitating heart transplantation, 6 years before apparent skeletal muscle involvement. Neuromuscul Disord 9, 598–600.PubMedCrossRefGoogle Scholar
  40. Finsterer, J., and Stollberger, C. (2003). The heart in human dystrophinopathies. Cardiology 99, 1–19.PubMedCrossRefGoogle Scholar
  41. Foster, H., Sharp, P.S., Athanasopoulos, T., Trollet, C., Graham, I.R., Foster, K., Wells, D.J., and Dickson, G. (2008). Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther 16, 1825–1832.PubMedCrossRefGoogle Scholar
  42. Frankel, K.A., and Rosser, R.J. (1976). The pathology of the heart in progressive muscular dystrophy: epimyocardial fibrosis. Hum Pathol 7, 375–386.PubMedCrossRefGoogle Scholar
  43. Gaedigk, R., Law, D.J., Fitzgerald-Gustafson, K.M., McNulty, S.G., Nsumu, N.N., Modrcin, A.C., Rinaldi, R.J., Pinson, D., Fowler, S.C., Bilgen, M., et al. (2006). Improvement in survival and muscle function in an mdx/utrn(−/−) double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord 16, 192–203.PubMedCrossRefGoogle Scholar
  44. Ghosh, A., and Duan, D. (2007). Expending adeno-associated viral vector capacity: a tale of two vectors. Biotechnol Genet Eng Rev 24, 165–177.PubMedGoogle Scholar
  45. Ghosh, A., Yue, Y., Lai, Y., and Duan, D. (2008). A hybrid vector system expands aden-associated viral vector packaging capacity in a transgene independent manner. Mol Ther 16, 124–130.PubMedCrossRefGoogle Scholar
  46. Ghosh, A., Yue, Y., Long, C., Bostick, B., and Duan, D. (2007). Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15, 750–755.PubMedCrossRefGoogle Scholar
  47. Grady, R.M., Grange, R.W., Lau, K.S., Maimone, M.M., Nichol, M.C., Stull, J.T., and Sanes, J.R. (1999). Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1, 215–220.PubMedCrossRefGoogle Scholar
  48. Grady, R.M., Teng, H., Nichol, M.C., Cunningham, J.C., Wilkinson, R.S., and Sanes, J.R. (1997). Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90, 729–738.PubMedCrossRefGoogle Scholar
  49. Grain, L., Cortina-Borja, M., Forfar, C., Hilton-Jones, D., Hopkin, J., and Burch, M. (2001). Cardiac abnormalities and skeletal muscle weakness in carriers of Duchenne and Becker muscular dystrophies and controls. Neuromuscul Disord 11, 186–191.PubMedCrossRefGoogle Scholar
  50. Gregorevic, P., Allen, J.M., Minami, E., Blankinship, M.J., Haraguchi, M., Meuse, L., Finn, E., Adams, M.E., Froehner, S.C., Murry, C.E., et al. (2006). rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 12, 787–789.PubMedCrossRefGoogle Scholar
  51. Gregorevic, P., Blankinship, M.J., Allen, J.M., Crawford, R.W., Meuse, L., Miller, D.G., Russell, D.W., and Chamberlain, J.S. (2004). Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10, 828–834.PubMedCrossRefGoogle Scholar
  52. Grieger, J.C., and Samulski, R.J. (2005). Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79, 9933–9944.PubMedCrossRefGoogle Scholar
  53. Guo, C., Willem, M., Werner, A., Raivich, G., Emerson, M., Neyses, L., and Mayer, U. (2006). Absence of alpha7 integrin in dystrophin-deficient mice causes a myopathy similar to Duchenne muscular dystrophy. Hum Mol Genet 15, 989–998.PubMedCrossRefGoogle Scholar
  54. Hainsey, T.A., Senapati, S., Kuhn, D.E., and Rafael, J.A. (2003). Cardiomyopathic features associated with muscular dystrophy are independent of dystrophin absence in cardiovasculature. Neuromuscul Disord 13, 294–302.PubMedCrossRefGoogle Scholar
  55. Halbert, C.L., Allen, J.M., and Miller, A.D. (2002). Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20, 697–701.PubMedCrossRefGoogle Scholar
  56. Harper, S.Q., Hauser, M.A., DelloRusso, C., Duan, D., Crawford, R.W., Phelps, S.F., Harper, H.A., Robinson, A.S., Engelhardt, J.F., Brooks, S.V., et al. (2002). Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8, 253–261.PubMedCrossRefGoogle Scholar
  57. Herzog, R.W., Mount, J.D., Arruda, V.R., High, K.A., and Lothrop, C.D., Jr. (2001). Muscle-directed gene transfer and transient immune suppression result in sustained partial correction of canine hemophilia B caused by a null mutation. Mol Ther 4, 192–200.PubMedCrossRefGoogle Scholar
  58. Heymsfield, S.B., McNish, T., Perkins, J.V., and Felner, J.M. (1978). Sequence of cardiac changes in Duchenne muscular dystrophy. Am Heart J 95, 283–294.PubMedCrossRefGoogle Scholar
  59. Hoffman, E.P. (1993). Genotype/phenotype correlations in Duchenne/Becker dystrophy. Mol Cell Biol Hum Dis Ser 3, 12–36.PubMedGoogle Scholar
  60. Hoffman, E.P., Fischbeck, K.H., Brown, R.H., Johnson, M., Medori, R., Loike, J.D., Harris, J.B., Waterston, R., Brooke, M., Specht, L., et al. (1988). Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J Med 318, 1363–1368.Google Scholar
  61. Holloway, S.M., Wilcox, D.E., Wilcox, A., Dean, J.C., Berg, J.N., Goudie, D.R., Denvir, M.A., and Porteous, M.E. (2008). Life expectancy and death from cardiomyopathy amongst carriers of Duchenne and Becker muscular dystrophy in Scotland. Heart 94, 633–636.PubMedCrossRefGoogle Scholar
  62. Hoogerwaard, E.M., Bakker, E., Ippel, P.F., Oosterwijk, J.C., Majoor-Krakauer, D.F., Leschot, N.J., Van Essen, A.J., Brunner, H.G., van der Wouw, P.A., Wilde, A.A., et al. (1999a). Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in The Netherlands: a cohort study. Lancet 353, 2116–2119.PubMedCrossRefGoogle Scholar
  63. Hoogerwaard, E.M., van der Wouw, P.A., Wilde, A.A., Bakker, E., Ippel, P.F., Oosterwijk, J.C., Majoor-Krakauer, D.F., van Essen, A.J., Leschot, N.J., and de Visser, M. (1999b). Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 9, 347–351.PubMedCrossRefGoogle Scholar
  64. Hoshijima, M., Ikeda, Y., Iwanaga, Y., Minamisawa, S., Date, M.O., Gu, Y., Iwatate, M., Li, M., Wang, L., Wilson, J.M., et al. (2002). Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8, 864–871.PubMedGoogle Scholar
  65. Hunsaker, R.H., Fulkerson, P.K., Barry, F.J., Lewis, R.P., Leier, C.V., and Unverferth, D.V. (1982). Cardiac function in Duchenne’s muscular dystrophy. Results of 10-year follow-up study and noninvasive tests. Am J Med 73, 235–238.PubMedCrossRefGoogle Scholar
  66. Inagaki, K., Fuess, S., Storm, T.A., Gibson, G.A., McTiernan, C.F., Kay, M.A., and Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14, 45–53.PubMedCrossRefGoogle Scholar
  67. Jearawiriyapaisarn, N., Moulton, H.M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., Iversen, P.L., and Kole, R. (2008). Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16, 1624–1629.PubMedCrossRefGoogle Scholar
  68. Kamakura, K. (2000). Cardiac involvement of female carrier of Duchenne muscular dystrophy. Intern Med 39, 2–3.PubMedCrossRefGoogle Scholar
  69. Kamakura, K., Kawai, M., Arahata, K., Koizumi, H., Watanabe, K., and Sugita, H. (1990). A manifesting carrier of Duchenne muscular dystrophy with severe myocardial symptoms. J Neurol 237, 483–485.PubMedCrossRefGoogle Scholar
  70. Kamogawa, Y., Biro, S., Maeda, M., Setoguchi, M., Hirakawa, T., Yoshida, H., and Tei, C. (2001). Dystrophin-deficient myocardium is vulnerable to pressure overload in vivo. Cardiovasc Res 50, 509–515.PubMedCrossRefGoogle Scholar
  71. Koenig, M., Beggs, A.H., Moyer, M., Scherpf, S., Heindrich, K., Bettecken, T., Meng, G., Muller, C.R., Lindlof, M., Kaariainen, H., et al. (1989). The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45, 498–506.PubMedGoogle Scholar
  72. Kornegay, J.N., Tuler, S.M., Miller, D.M., and Levesque, D.C. (1988). Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11, 1056–1064.PubMedCrossRefGoogle Scholar
  73. Kunkel, L.M. (2005). 2004 William Allan Award address. Cloning of the DMD gene. Am J Hum Genet 76, 205–214.PubMedCrossRefGoogle Scholar
  74. Lai, Y., Li, D., Yue, Y., and Duan, D. (2008). Design of trans-splicing adeno-associated viral vectors for Duchenne muscular dystrophy gene therapy. Methods Mol Biol 433, 259–275.PubMedCrossRefGoogle Scholar
  75. Lai, Y., Thomas, G.D., Yue, Y., Yang, H.T., Li, D., Long, C., Judge, L., Bostick, B., Chamberlain, J.S., Terjung, R.L., et al. (2009). Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119, 624–635.PubMedCrossRefGoogle Scholar
  76. Lai, Y., Yue, Y., Liu, M., Ghosh, A., Engelhardt, J.F., Chamberlain, J.S., and Duan, D. (2005). Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23, 1435–1439.PubMedCrossRefGoogle Scholar
  77. Lane, R.J., Gardner-Medwin, D., and Roses, A.D. (1980). Electrocardiographic abnormalities in carriers of Duchenne muscular dystrophy. Neurology 30, 497–501.PubMedGoogle Scholar
  78. Li, D., Long, C., Yue, Y., and Duan, D. (2009). Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice. Hum Mol Genet 18, 1209–1220.PubMedCrossRefGoogle Scholar
  79. Li, J., Wang, D., Qian, S., Chen, Z., Zhu, T., and Xiao, X. (2003). Efficient and long-term intracardiac gene transfer in delta-sarcoglycan-deficiency hamster by adeno-associated virus-2 vectors. Gene Ther 10, 1807–1813.PubMedCrossRefGoogle Scholar
  80. Liu, M., Yue, Y., Harper, S.Q., Grange, R.W., Chamberlain, J.S., and Duan, D. (2005). Adeno-associated virus-mediated micro-dystrophin expression protects young Mdx muscle from contraction-induced injury. Mol Ther 11, 245–256.PubMedCrossRefGoogle Scholar
  81. Markham, L.W., Spicer, R.L., and Cripe, L.H. (2005). The heart in muscular dystrophy. Pediatr Ann 34, 531–535.PubMedGoogle Scholar
  82. Matsuda, M., Akatsuka, N., Yamaguchi, T., Saito, T., and Takahashi, H. (1977). Systolic time intervals in patients with progressive muscular dystrophy of the Duchenne type. Jpn Heart J 18, 638–651.PubMedGoogle Scholar
  83. Megeney, L.A., Kablar, B., Garrett, K., Anderson, J.E., and Rudnicki, M.A. (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10, 1173–1183.PubMedCrossRefGoogle Scholar
  84. Megeney, L.A., Kablar, B., Perry, R.L., Ying, C., May, L., and Rudnicki, M.A. (1999). Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci U S A 96, 220–225.PubMedCrossRefGoogle Scholar
  85. Melacini, P., Fanin, M., Angelini, A., Pegoraro, E., Livi, U., Danieli, G.A., Hoffman, E.P., Thiene, G., Dalla Volta, S., and Angelini, C. (1998). Cardiac transplantation in a Duchenne muscular dystrophy carrier. Neuromuscul Disord 8, 585–590.PubMedCrossRefGoogle Scholar
  86. Melacini, P., Gambino, A., Caforio, A., Barchitta, A., Valente, M.L., Angelini, A., Fanin, M., Thiene, G., Angelini, C., Casarotto, D., et al. (2001). Heart transplantation in patients with inherited myopathies associated with end-stage cardiomyopathy: molecular and biochemical defects on cardiac and skeletal muscle. Transplant Proc 33, 1596–1599.PubMedCrossRefGoogle Scholar
  87. Mirabella, M., Servidei, S., Manfredi, G., Ricci, E., Frustaci, A., Bertini, E., Rana, M., and Tonali, P. (1993). Cardiomyopathy may be the only clinical manifestation in female carriers of Duchenne muscular dystrophy. Neurology 43, 2342–2345.PubMedGoogle Scholar
  88. Moise, N.S., Valentine, B.A., Brown, C.A., Erb, H.N., Beck, K.A., Cooper, B.J., and Gilmour, R.F. (1991). Duchenne’s cardiomyopathy in a canine model: electrocardiographic and echocardiographic studies. J Am Coll Cardiol 17, 812–820.PubMedCrossRefGoogle Scholar
  89. Monaco, A.P., Bertelson, C.J., Liechti-Gallati, S., Moser, H., and Kunkel, L.M. (1988). An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95.PubMedCrossRefGoogle Scholar
  90. Muntoni, F., Wilson, L., Marrosu, G., Marrosu, M.G., Cianchetti, C., Mestroni, L., Ganau, A., Dubowitz, V., and Sewry, C. (1995). A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart. J Clin Invest 96, 693–699.PubMedCrossRefGoogle Scholar
  91. Nakamura, A., Yoshida, K., Takeda, S., Dohi, N., and Ikeda, S. (2002). Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 520, 18–24.PubMedCrossRefGoogle Scholar
  92. Nigro, G., Comi, L.I., Politano, L., and Bain, R.J. (1990). The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26, 271–277.PubMedCrossRefGoogle Scholar
  93. Nigro, G., Comi, L.I., Politano, L., Limongelli, F.M., Nigro, V., De Rimini, M.L., Giugliano, M.A., Petretta, V.R., Passamano, L., Restucci, B., et al. (1995). Evaluation of the cardiomyopathy in Becker muscular dystrophy. Muscle Nerve 18, 283–291.PubMedCrossRefGoogle Scholar
  94. Nolan, M.A., Jones, O.D., Pedersen, R.L., and Johnston, H.M. (2003). Cardiac assessment in childhood carriers of Duchenne and Becker muscular dystrophies. Neuromuscul Disord 13, 129–132.PubMedCrossRefGoogle Scholar
  95. Ogata, H., Nakagawa, H., Hamabe, K., Hattori, A., Ishikawa, Y., Ishikawa, Y., Saito, M., and Minami, R. (2000). A female carrier of Duchenne muscular dystrophy complicated with cardiomyopathy. Intern Med 39, 34–38.PubMedCrossRefGoogle Scholar
  96. Pacak, C.A., Mah, C.S., Thattaliyath, B.D., Conlon, T.J., Lewis, M.A., Cloutier, D.E., Zolotukhin, I., Tarantal, A.F., and Byrne, B.J. (2006). Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99, e3–e9.CrossRefGoogle Scholar
  97. Patane, F., Zingarelli, E., Attisani, M., and Sansone, F. (2006). Successful heart transplantation in Becker’s muscular dystrophy. Eur J Cardiothorac Surg 29, 250.PubMedCrossRefGoogle Scholar
  98. Perloff, J.K., de Leon, A.C., Jr., and O’Doherty, D. (1966). The cardiomyopathy of progressive muscular dystrophy. Circulation 33, 625–648.Google Scholar
  99. Perloff, J.K., Roberts, W.C., de Leon, A.C., Jr., and O’Doherty, D. (1967). The distinctive electrocardiogram of Duchenne’s progressive muscular dystrophy. An electrocardiographic–pathologic correlative study. Am J Med 42, 179–188.Google Scholar
  100. Petrof, B.J. (2002). Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin–glycoprotein complex. Am J Phys Med Rehabil 81, S162–S174.CrossRefGoogle Scholar
  101. Phelps, S.F., Hauser, M.A., Cole, N.M., Rafael, J.A., Hinkle, R.T., Faulkner, J.A., and Chamberlain, J.S. (1995). Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet 4, 1251–1258.PubMedCrossRefGoogle Scholar
  102. Politano, L., Nigro, V., Nigro, G., Petretta, V.R., Passamano, L., Papparella, S., Di Somma, S., and Comi, L.I. (1996). Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA 275, 1335–1338.PubMedCrossRefGoogle Scholar
  103. Quinlan, J.G., Hahn, H.S., Wong, B.L., Lorenz, J.N., Wenisch, A.S., and Levin, L.S. (2004). Evolution of the mdx mouse cardiomyopathy: physiological and morphological findings. Neuromuscul Disord 14, 491–496.PubMedCrossRefGoogle Scholar
  104. Quinlivan, R.M., and Dubowitz, V. (1992). Cardiac transplantation in Becker muscular dystrophy. Neuromuscul Disord 2, 165–167.PubMedCrossRefGoogle Scholar
  105. Rando, T.A. (2001). The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24, 1575–1594.PubMedCrossRefGoogle Scholar
  106. Rodino-Klapac, L.R., Janssen, P.M., Montgomery, C.L., Coley, B.D., Chicoine, L.G., Clark, K.R., and Mendell, J.R. (2007). A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 5, 45.PubMedCrossRefGoogle Scholar
  107. Rooney, J.E., Welser, J.V., Dechert, M.A., Flintoff-Dye, N.L., Kaufman, S.J., and Burkin, D.J. (2006). Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. J Cell Sci 119, 2185–2195.PubMedCrossRefGoogle Scholar
  108. Rose, J.A., Maizel, J.V., Jr., Inman, J.K., and Shatkin, A.J. (1971). Structural proteins of adenovirus-associated viruses. J Virol 8, 766–770.PubMedGoogle Scholar
  109. Ruiz-Cano, M.J., Delgado, J.F., Jimenez, C., Jimenez, S., Cea-Calvo, L., Sanchez, V., Escribano, P., Gomez, M.A., Gil-Fraguas, L., and Saenz de la Calzada, C. (2003). Successful heart transplantation in patients with inherited myopathies associated with end-stage cardiomyopathy. Transplant Proc 35, 1513–1515.PubMedCrossRefGoogle Scholar
  110. Sadeghi, A., Doyle, A.D., and Johnson, B.D. (2002). Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins alpha-actinin and dystrophin. Am J Physiol Cell Physiol 282, C1502–C1511.Google Scholar
  111. Sakamoto, M., Yuasa, K., Yoshimura, M., Yokota, T., Ikemoto, T., Suzuki, M., Dickson, G., Miyagoe-Suzuki, Y., and Takeda, S. (2002). Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem Biophys Res Commun 293, 1265–1272.PubMedCrossRefGoogle Scholar
  112. Shelton, G.D., and Engvall, E. (2005). Canine and feline models of human inherited muscle diseases. Neuromuscul Disord 15, 127–138.PubMedCrossRefGoogle Scholar
  113. Su, H., Lu, R., and Kan, Y.W. (2000). Adeno-associated viral vector-mediated vascular endothelial growth factor gene transfer induces neovascular formation in ischemic heart. Proc Natl Acad Sci U S A 97, 13801–13806.PubMedCrossRefGoogle Scholar
  114. Sun, L., Li, J., and Xiao, X. (2000). Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6, 599–602.PubMedCrossRefGoogle Scholar
  115. Svensson, E.C., Marshall, D.J., Woodard, K., Lin, H., Jiang, F., Chu, L., and Leiden, J.M. (1999). Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 99, 201–205.PubMedGoogle Scholar
  116. Takenaka, A., Yokota, M., Iwase, M., Miyaguchi, K., Hayashi, H., and Saito, H. (1993). Discrepancy between systolic and diastolic dysfunction of the left ventricle in patients with Duchenne muscular dystrophy. Eur Heart J 14, 669–676.PubMedGoogle Scholar
  117. Towbin, J.A., Hejtmancik, J.F., Brink, P., Gelb, B., Zhu, X.M., Chamberlain, J.S., McCabe, E.R., and Swift, M. (1993). X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87, 1854–1865.PubMedGoogle Scholar
  118. Townsend, D., Blankinship, M.J., Allen, J.M., Gregorevic, P., Chamberlain, J.S., and Metzger, J.M. (2007). Systemic administration of micro-dystrophin restores cardiac geometry and prevents dobutamine-induced cardiac pump failure. Mol Ther 15, 1086–1092.PubMedGoogle Scholar
  119. Townsend, D., Yasuda, S., Li, S., Chamberlain, J.S., and Metzger, J.M. (2008). Emergent dilated cardiomyopathy caused by targeted repair of dystrophic skeletal muscle. Mol Ther 16, 832–835.PubMedCrossRefGoogle Scholar
  120. Utsunomiya, T., Mori, H., Shibuya, N., Oku, Y., Matsuo, S., and Hashiba, K. (1990). Long-term observation of cardiac function in Duchenne’s muscular dystrophy. Evaluation using systolic time intervals and echocardiography. Jpn Heart J 31, 585–597.PubMedGoogle Scholar
  121. Valentine, B.A., Cummings, J.F., and Cooper, B.J. (1989). Development of Duchenne-type cardiomyopathy. Morphologic studies in a canine model. Am J Pathol 135, 671–678.PubMedGoogle Scholar
  122. van Deutekom, J.C., Janson, A.A., Ginjaar, I.B., Frankhuizen, W.S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J.T., Koop, K., van der Kooi, A.J., Goemans, N.M., et al. (2007). Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357, 2677–2686.PubMedCrossRefGoogle Scholar
  123. Walcher, T., Kunze, M., Steinbach, P., Sperfeld, A.D., Burgstahler, C., Hombach, V., and Torzewski, J. (2008). Cardiac involvement in a female carrier of Duchenne muscular dystrophy. Int J Cardiol. Online publication ahead of print. doi, 10.1016/j.ijcard.2008.06.084Google Scholar
  124. Wang, B., Li, J., Fu, F.H., and Xiao, X. (2008a). Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J Orthop Res 27, 421–426Google Scholar
  125. Wang, B., Li, J., Qiao, C., Chen, C., Hu, P., Zhu, X., Zhou, L., Bogan, J., Kornegay, J., and Xiao, X. (2008b). A canine minidystrophin is functional and therapeutic in mdx mice. Gene Ther 15, 1099–1106.PubMedCrossRefGoogle Scholar
  126. Wang, B., Li, J., and Xiao, X. (2000). Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 97, 13714–13719.PubMedCrossRefGoogle Scholar
  127. Wang, Z., Allen, J.M., Riddell, S.R., Gregorevic, P., Storb, R., Tapscott, S.J., Chamberlain, J.S., and Kuhr, C.S. (2007a). Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18, 18–26.PubMedCrossRefGoogle Scholar
  128. Wang, Z., Kuhr, C.S., Allen, J.M., Blankinship, M., Gregorevic, P., Chamberlain, J.S., Tapscott, S.J., and Storb, R. (2007b). Sustained AAV-mediated dystrophin expression in a canine model of duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15, 1160–1166.PubMedGoogle Scholar
  129. Warrington, K.H., Jr., Gorbatyuk, O.S., Harrison, J.K., Opie, S.R., Zolotukhin, S., and Muzyczka, N. (2004). Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78, 6595–6609.PubMedCrossRefGoogle Scholar
  130. Watchko, J., O’Day, T., Wang, B., Zhou, L., Tang, Y., Li, J., and Xiao, X. (2002). Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther 13, 1451–1460.PubMedCrossRefGoogle Scholar
  131. Wells, D.J., Wells, K.E., Asante, E.A., Turner, G., Sunada, Y., Campbell, K.P., Walsh, F.S., and Dickson, G. (1995). Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4, 1245–1250.PubMedCrossRefGoogle Scholar
  132. Wieczorek, L.A., Garosi, L.S., and Shelton, G.D. (2006). Dystrophin-deficient muscular dystrophy in an old English sheepdog. Vet Rec 158, 270–273.PubMedCrossRefGoogle Scholar
  133. Wu, B., Li, Y., Morcos, P.A., Doran, T.J., Lu, P., and Lu, Q.L. (2009). Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17, 864–871.Google Scholar
  134. Wu, B., Moulton, H.M., Iversen, P.L., Jiang, J., Li, J., Spurney, C.F., Sali, A., Guerron, A.D., Nagaraju, K., Doran, T., et al. (2008). Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105, 14814–14819.PubMedCrossRefGoogle Scholar
  135. Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M.S. (2002). The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99, 10405–10410.PubMedCrossRefGoogle Scholar
  136. Yan, Z., Duan, D., and Engelhardt, J.F. (2006). Mechanism of recombinant adeno-associated virus transduction. In Parvoviruses, M.E. Bloom, S.F. Cotmore, R.M. Linden, C.R. Parrish, and J.R. Kerr, eds. (London, England, Hodder Arnold; Distributed in the U.S.A. by Oxford University Press), pp. 511–524.Google Scholar
  137. Yan, Z., Zhang, Y., Duan, D., and Engelhardt, J.F. (2000). From the Cover: Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97, 6716–6721.PubMedCrossRefGoogle Scholar
  138. Yang, L., Jiang, J., Drouin, L.M., Agbandje-McKenna, M., Chen, C., Qiao, C., Pu, D., Hu, X., Wang, D.Z., Li, J., et al. (2009). A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A 106, 3946–3951.PubMedCrossRefGoogle Scholar
  139. Yasuda, S., Townsend, D., Michele, D.E., Favre, E.G., Day, S.M., and Metzger, J.M. (2005). Dystrophic heart failure blocked by membrane sealant poloxamer. Nature 436, 1025–1029.PubMedCrossRefGoogle Scholar
  140. Yin, H., Lu, Q., and Wood, M. (2008a). Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16, 38–45.PubMedCrossRefGoogle Scholar
  141. Yin, H., Moulton, H.M., Seow, Y., Boyd, C., Boutilier, J., Iverson, P., and Wood, M.J. (2008b). Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17, 3909–3918.PubMedCrossRefGoogle Scholar
  142. Yokota, T., Lu, Q.L., Partridge, T., Kobayashi, M., Nakamura, A., Takeda, S., and Hoffman, E. (2009). Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs. Ann Neurol 65, 667–676. Google Scholar
  143. Yoshimura, M., Sakamoto, M., Ikemoto, M., Mochizuki, Y., Yuasa, K., Miyagoe-Suzuki, Y., and Takeda, S. (2004). AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 10, 821–828.PubMedCrossRefGoogle Scholar
  144. Yuasa, K., Miyagoe, Y., Yamamoto, K., Nabeshima, Y., Dickson, G., and Takeda, S. (1998). Effective restoration of dystrophin-associated proteins in vivo by adenovirus-mediated transfer of truncated dystrophin cDNAs. FEBS Lett 425, 329–336.PubMedCrossRefGoogle Scholar
  145. Yuasa, K., Yoshimura, M., Urasawa, N., Ohshima, S., Howell, J.M., Nakamura, A., Hijikata, T., Miyagoe-Suzuki, Y., and Takeda, S. (2007). Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther 14, 1249–1260.PubMedCrossRefGoogle Scholar
  146. Yue, Y., Ghosh, A., Long, C., Bostick, B., Smith, B.F., Kornegay, J.N., and Duan, D. (2008). A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16, 1944–1952.PubMedCrossRefGoogle Scholar
  147. Yue, Y., Li, Z., Harper, S.Q., Davisson, R.L., Chamberlain, J.S., and Duan, D. (2003). Microdystrophin gene therapy of cardiomyopathy restores dystrophin–glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation 108, 1626–1632.PubMedCrossRefGoogle Scholar
  148. Yue, Y., Liu, M., and Duan, D. (2006). C-terminal truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double knock-out mice. Mol Ther 14, 79–87.PubMedCrossRefGoogle Scholar
  149. Yue, Y., Skimming, J.W., Liu, M., Strawn, T., and Duan, D. (2004). Full-length dystrophin expression in half of the heart cells ameliorates beta-isoproterenol-induced cardiomyopathy in mdx mice. Hum Mol Genet 13, 1669–1675.PubMedCrossRefGoogle Scholar
  150. Yugeta, N., Urasawa, N., Fujii, Y., Yoshimura, M., Yuasa, K., Wada, M.R., Nakura, M., Shimatsu, Y., Tomohiro, M., Takahashi, A., et al. (2006). Cardiac involvement in Beagle-based canine X-linked muscular dystrophy in Japan (CXMDJ): electrocardiographic, echocardiographic, and morphologic studies. BMC Cardiovasc Disord 6, 47.PubMedCrossRefGoogle Scholar
  151. Zhu, X., Wheeler, M.T., Hadhazy, M., Lam, M.Y., and McNally, E.M. (2002). Cardiomyopathy is independent of skeletal muscle disease in muscular dystrophy. Faseb J 16, 1096–1098.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jin-Hong Shin
  • Brian Bostick
  • Deborah M. Fine
  • Yongping Yue
  • Dongsheng Duan
    • 1
  1. 1.Department of Molecular Microbiology and ImmunologySchool of Medicine, The University of Missouri, One Hospital Dr.ColumbiaUSA

Personalised recommendations