Skip to main content

RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies

  • Chapter
  • First Online:
Muscle Gene Therapy

Abstract

Over the last ∼15 years, muscular dystrophy gene therapy strategies have been primarily aimed at replacing defective or missing genes underlying recessive disorders, such as Duchenne muscular dystrophy. These gene replacement strategies are typically not indicated for treating dominant diseases; instead, patients bearing dominant mutations would likely benefit from reduction or elimination of the abnormal allele. Until very recently, there was no feasible mechanism to reduce or eliminate disease genes, and molecular therapy development for dominant muscular dystrophies was largely unexplored. RNA interference (RNAi) has recently emerged as a powerful tool to suppress any gene of interest in a sequence-specific manner. As such, RNAi is a leading candidate strategy to silence dominant disease genes, including those involved in muscular dystrophy and related myopathies. Here, we discuss the potential for RNAi-mediated gene therapy of dominant muscular dystrophies and other myopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Incidence range was calculated from Orphanet 2008 Report data (INSERM and French Ministry of Health 2008) and traditional reports of FSHD and myotonic dystrophy prevalence (Flanigan et al. 2001; Harper 1989). Least prevalence was calculated using myotonic dystrophy incidence of 4.5/100,000 and FSHD 5/100,000. Highest prevalence calculations used 12.5/100,000 and 7/100,000, respectively.

References

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.

    Article  CAS  PubMed  Google Scholar 

  • Berul, C.I., Maguire, C.T., Aronovitz, M.J., Greenwood, J., Miller, C., Gehrmann, J., Housman, D., Mendelsohn, M.E., and Reddy, S. (1999). DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J Clin Invest 103, R1-7.

    Article  Google Scholar 

  • Borchert, G.M., Lanier, W., and Davidson, B.L. (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13, 1097-1101.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau, R.L., Martins, I., and Davidson, B.L. (2009). Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17, 169-175.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957-1966.

    Article  CAS  PubMed  Google Scholar 

  • Carbone, I., Bruno, C., Sotgia, F., Bado, M., Broda, P., Masetti, E., Panella, A., Zara, F., Bricarelli, F.D., Cordone, G., et al. (2000). Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology 54, 1373-1376.

    Google Scholar 

  • Celegato, B., Capitanio, D., Pescatori, M., Romualdi, C., Pacchioni, B., Cagnin, S., Vigano, A., Colantoni, L., Begum, S., Ricci, E., et al. (2006). Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD-dependent genes. Proteomics 6, 5303-5321.

    Article  CAS  PubMed  Google Scholar 

  • Cho, D.H., and Tapscott, S.J. (2007). Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772, 195-204.

    CAS  PubMed  Google Scholar 

  • Corbett, M.A., Akkari, P.A., Domazetovska, A., Cooper, S.T., North, K.N., Laing, N.G., Gunning, P.W., and Hardeman, E.C. (2005). An alphaTropomyosin mutation alters dimer preference in nemaline myopathy. Ann Neurol 57, 42-49.

    Article  CAS  PubMed  Google Scholar 

  • de Haan, A., van der Vliet, M.R., Gommans, I.M., Hardeman, E.C., and van Engelen, B.G. (2002). Skeletal muscle of mice with a mutation in slow alpha-tropomyosin is weaker at lower lengths. Neuromuscul Disord 12, 952-957.

    Article  PubMed  Google Scholar 

  • Dixit, M., Ansseau, E., Tassin, A., Winokur, S., Shi, R., Qian, H., Sauvage, S., Matteotti, C., van Acker, A.M., Leo, O., et al. (2007). DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. Proc Natl Acad Sci U S A 104, 18157-18162.

    Article  CAS  PubMed  Google Scholar 

  • Du, G., Yonekubo, J., Zeng, Y., Osisami, M., and Frohman, M.A. (2006). Design of expression vectors for RNA interference based on miRNAs and RNA splicing. FEBS J 273, 5421-5427.

    Article  CAS  PubMed  Google Scholar 

  • Durling, H.J., Reilich, P., Muller-Hocker, J., Mendel, B., Pongratz, D., Wallgren-Pettersson, C., Gunning, P., Lochmuller, H., and Laing, N.G. (2002). De novo missense mutation in a constitutively expressed exon of the slow alpha-tropomyosin gene TPM3 associated with an atypical, sporadic case of nemaline myopathy. Neuromuscul Disord 12, 947-951.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A.A., Lidov, H.G., Kang, P.B., North, K.N., Mitrani-Rosenbaum, S., et al. (2007). Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A 104, 17016-17021.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498.

    Article  CAS  PubMed  Google Scholar 

  • Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15, 188-200.

    Article  CAS  PubMed  Google Scholar 

  • Fechner, H., Sipo, I., Westermann, D., Pinkert, S., Wang, X., Suckau, L., Kurreck, J., Zeichhardt, H., Muller, O., Vetter, R., et al. (2008). Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. J Mol Med 86, 987-997.

    Article  CAS  PubMed  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.

    Article  CAS  PubMed  Google Scholar 

  • Flanigan, K.M., Coffeen, C.M., Sexton, L., Stauffer, D., Brunner, S., and Leppert, M.F. (2001). Genetic characterization of a large, historically significant Utah kindred with facioscapulohumeral dystrophy. Neuromuscul Disord 11, 525-529.

    Article  CAS  PubMed  Google Scholar 

  • Foroud, T., Pankratz, N., Batchman, A.P., Pauciulo, M.W., Vidal, R., Miravalle, L., Goebel, H.H., Cushman, L.J., Azzarelli, B., Horak, H., et al. (2005). A mutation in myotilin causes spheroid body myopathy. Neurology 65, 1936-1940.

    Article  CAS  PubMed  Google Scholar 

  • Gabellini, D., Green, M.R., and Tupler, R. (2002). Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110, 339-348.

    Article  CAS  PubMed  Google Scholar 

  • Gabellini, D., Tupler, R., and Green, M.R. (2003). Transcriptional derepression as a cause of genetic diseases. Curr Opin Genet Dev 13, 239-245.

    Article  CAS  PubMed  Google Scholar 

  • Gabellini, D., D’Antona, G., Moggio, M., Prelle, A., Zecca, C., Adami, R., Angeletti, B., Ciscato, P., Pellegrino, M.A., Bottinelli, R., et al. (2006). Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439, 973-977.

    CAS  PubMed  Google Scholar 

  • Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M., Hou, H., Jr., Kneitz, B., Edelmann, W., and Lisanti, M.P. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276, 21425-21433.

    Article  CAS  PubMed  Google Scholar 

  • Garvey, S.M., Miller, S.E., Claflin, D.R., Faulkner, J.A., and Hauser, M.A. (2006). Transgenic mice expressing the myotilin T57I mutation unite the pathology associated with LGMD1A and MFM. Hum Mol Genet 15, 2348-2362.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.

    Article  CAS  PubMed  Google Scholar 

  • Grimm, D., Streetz, K.L., Jopling, C.L., Storm, T.A., Pandey, K., Davis, C.R., Marion, P., Salazar, F., and Kay, M.A. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537-541.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18, 3016-3027.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901.

    Article  CAS  PubMed  Google Scholar 

  • Harper, P.S. (1989). Myotonic dystrophy (2nd ed.) (London, W.B. Saunders).

    Google Scholar 

  • Harper, S.Q., Staber, P.D., He, X., Eliason, S.L., Martins, I.H., Mao, Q., Yang, L., Kotin, R.M., Paulson, H.L., and Davidson, B.L. (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102, 5820-5825.

    Article  CAS  PubMed  Google Scholar 

  • Harper, S.Q., Staber, P.D., Beck, C.R., Fineberg, S.K., Stein, C., Ochoa, D., and Davidson, B.L. (2006). Optimization of feline immunodeficiency virus vectors for RNA interference. J Virol 80, 9371-9380.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, M.A., Horrigan, S.K., Salmikangas, P., Torian, U.M., Viles, K.D., Dancel, R., Tim, R.W., Taivainen, A., Bartoloni, L., Gilchrist, J.M., et al. (2000). Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 9, 2141-2147.

    Article  CAS  PubMed  Google Scholar 

  • Hauser, M.A., Conde, C.B., Kowaljow, V., Zeppa, G., Taratuto, A.L., Torian, U.M., Vance, J., Pericak-Vance, M.A., Speer, M.C., and Rosa, A.L. (2002). Myotilin mutation found in second pedigree with LGMD1A. Am J Hum Genet 71, 1428-1432.

    Article  CAS  PubMed  Google Scholar 

  • Ilkovski, B., Mokbel, N., Lewis, R.A., Walker, K., Nowak, K.J., Domazetovska, A., Laing, N.G., Fowler, V.M., North, K.N., and Cooper, S.T. (2008). Disease severity and thin filament regulation in M9R TPM3 nemaline myopathy. J Neuropathol Exp Neurol 67, 867-877.

    Article  CAS  PubMed  Google Scholar 

  • INSERM and French Ministry of Health. (2008). Prevalence of Rare Diseases: Bibliographic Data. In Orphanet Report http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf

  • Kee, A.J., and Hardeman, E.C. (2008). Tropomyosins in skeletal muscle diseases. Adv Exp Med Biol 644, 143-157.

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa, T., Igarashi, S., Nishizawa, M., and Onodera, O. (2005). Selective silencing of a mutant transthyretin allele by small interfering RNAs. Biochem Biophys Res Commun 337, 1012-1018.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-858.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003). New microRNAs from mouse and human. RNA 9, 175-179.

    Article  CAS  PubMed  Google Scholar 

  • Lai, E.C. (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363-364.

    Article  CAS  PubMed  Google Scholar 

  • Laing, N.G., Wilton, S.D., Akkari, P.A., Dorosz, S., Boundy, K., Kneebone, C., Blumbergs, P., White, S., Watkins, H., Love, D.R., et al. (1995). A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 10, 249.

    CAS  PubMed  Google Scholar 

  • Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167.

    Article  CAS  PubMed  Google Scholar 

  • Langlois, M.A., Boniface, C., Wang, G., Alluin, J., Salvaterra, P.M., Puymirat, J., Rossi, J.J., and Lee, N.S. (2005). Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem 280, 16949-16954.

    Article  CAS  PubMed  Google Scholar 

  • Laoudj-Chenivesse, D., Carnac, G., Bisbal, C., Hugon, G., Bouillot, S., Desnuelle, C., Vassetzky, Y., and Fernandez, A. (2005). Increased levels of adenine nucleotide translocator 1 protein and response to oxidative stress are early events in facioscapulohumeral muscular dystrophy muscle. J Mol Med 83, 216-224.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.C., Patel, M.K., Mistry, D.J., Wang, Q., Reddy, S., Moorman, J.R., and Mounsey, J.P. (2003a). Abnormal Na channel gating in murine cardiac myocytes deficient in myotonic dystrophy protein kinase. Physiol Genomics 12, 147-157.

    CAS  PubMed  Google Scholar 

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003b). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060.

    Article  CAS  PubMed  Google Scholar 

  • Lehtokari, V.L., Pelin, K., Donner, K., Voit, T., Rudnik-Schoneborn, S., Stoetter, M., Talim, B., Topaloglu, H., Laing, N.G., and Wallgren-Pettersson, C. (2008). Identification of a founder mutation in TPM3 in nemaline myopathy patients of Turkish origin. Eur J Hum Genet 16, 1055-1061.

    Article  CAS  PubMed  Google Scholar 

  • Lemmers, R.J., Wohlgemuth, M., van der Gaag, K.J., van der Vliet, P.J., van Teijlingen, C.M., de Knijff, P., Padberg, G.W., Frants, R.R., and van der Maarel, S.M. (2007). Specific sequence variations within the 4q35 region are associated with facioscapulohumeral muscular dystrophy. Am J Hum Genet 81, 884-894.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.

    Article  CAS  PubMed  Google Scholar 

  • Li, M.J., Bauer, G., Michienzi, A., Yee, J.K., Lee, N.S., Kim, J., Li, S., Castanotto, D., Zaia, J., and Rossi, J.J. (2003). Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Mol Ther 8, 196-206.

    Article  CAS  PubMed  Google Scholar 

  • Matranga, C., Tomari, Y., Shin, C., Bartel, D.P., and Zamore, P.D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620.

    Article  CAS  PubMed  Google Scholar 

  • McBride, J.L., Boudreau, R.L., Harper, S.Q., Staber, P.D., Monteys, A.M., Martins, I., Gilmore, B.L., Burstein, H., Peluso, R.W., Polisky, B., et al. (2008). Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105, 5868-5873.

    Article  CAS  PubMed  Google Scholar 

  • Miller, V.M., Xia, H., Marrs, G.L., Gouvion, C.M., Lee, G., Davidson, B.L., and Paulson, H.L. (2003). Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 100, 7195-7200.

    Article  CAS  PubMed  Google Scholar 

  • Miller, V.M., Paulson, H.L., and Gonzalez-Alegre, P. (2005). RNA interference in neuroscience: progress and challenges. Cell Mol Neurobiol 25, 1195-1207.

    Article  PubMed  Google Scholar 

  • Minetti, C., Sotgia, F., Bruno, C., Scartezzini, P., Broda, P., Bado, M., Masetti, E., Mazzocco, M., Egeo, A., Donati, M.A., et al. (1998). Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18, 365-368.

    Article  CAS  PubMed  Google Scholar 

  • Molnar, A., Schwach, F., Studholme, D.J., Thuenemann, E.C., and Baulcombe, D.C. (2007). miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126-1129.

    Article  CAS  PubMed  Google Scholar 

  • Molnar, A., Bassett, A., Thuenemann, E., Schwach, F., Karkare, S., Ossowski, S., Weigel, D., and Baulcombe, D. (2009). Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58, 165–174

    Google Scholar 

  • Mook, O.R., Baas, F., de Wissel, M.B., and Fluiter, K. (2009). Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A. Cancer Gene Ther 16, 532–538.

    Google Scholar 

  • Mounsey, J.P., Mistry, D.J., Ai, C.W., Reddy, S., and Moorman, J.R. (2000). Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum Mol Genet 9, 2313-2320.

    CAS  PubMed  Google Scholar 

  • Moza, M., Mologni, L., Trokovic, R., Faulkner, G., Partanen, J., and Carpen, O. (2007). Targeted deletion of the muscular dystrophy gene myotilin does not perturb muscle structure or function in mice. Mol Cell Biol 27, 244-252.

    Article  CAS  PubMed  Google Scholar 

  • National Institutes of Health Office of Rare Diseases Research. (2009). In Rare Diseases and Related Terms http://rarediseasesinfonihgov/RareDiseaseListaspx?PageID=1

  • Ohrt, T., Mutze, J., Staroske, W., Weinmann, L., Hock, J., Crell, K., Meister, G., and Schwille, P. (2008). Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36, 6439-6449.

    Article  CAS  PubMed  Google Scholar 

  • Osborne, R.J., Welle, S., Venance, S.L., Thornton, C.A., and Tawil, R. (2007). Expression profile of FSHD supports a link between retinal vasculopathy and muscular dystrophy. Neurology 68, 569-577.

    Article  CAS  PubMed  Google Scholar 

  • Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., and Conklin, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948-958.

    Article  CAS  PubMed  Google Scholar 

  • Penisson-Besnier, I., Monnier, N., Toutain, A., Dubas, F., and Laing, N. (2007). A second pedigree with autosomal dominant nemaline myopathy caused by TPM3 mutation: a clinical and pathological study. Neuromuscul Disord 17, 330-337.

    Article  PubMed  Google Scholar 

  • Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21, 5864-5874.

    Article  CAS  PubMed  Google Scholar 

  • Quinzii, C.M., Vu, T.H., Min, K.C., Tanji, K., Barral, S., Grewal, R.P., Kattah, A., Camano, P., Otaegui, D., Kunimatsu, T., et al. (2008). X-linked dominant scapuloperoneal myopathy is due to a mutation in the gene encoding four-and-a-half-LIM protein 1. Am J Hum Genet 82, 208-213.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, S., Smith, D.B., Rich, M.M., Leferovich, J.M., Reilly, P., Davis, B.M., Tran, K., Rayburn, H., Bronson, R., Cros, D., et al. (1996). Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13, 325-335.

    Article  CAS  PubMed  Google Scholar 

  • Reed, P.W., Corse, A.M., Porter, N.C., Flanigan, K.M., and Bloch, R.J. (2007). Abnormal expression of mu-crystallin in facioscapulohumeral muscular dystrophy. Exp Neurol 205, 583-586.

    Article  CAS  PubMed  Google Scholar 

  • Rethinasamy, P., Muthuchamy, M., Hewett, T., Boivin, G., Wolska, B.M., Evans, C., Solaro, R.J., and Wieczorek, D.F. (1998). Molecular and physiological effects of alpha-tropomyosin ablation in the mouse. Circ Res 82, 116-123.

    CAS  PubMed  Google Scholar 

  • Ro, S., Park, C., Young, D., Sanders, K.M., and Yan, W. (2007). Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 35, 5944-5953.

    Article  CAS  PubMed  Google Scholar 

  • Robb, G.B., Brown, K.M., Khurana, J., and Rana, T.M. (2005). Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12, 133-137.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lebron, E., and Paulson, H.L. (2006). Allele-specific RNA interference for neurological disease. Gene Ther 13, 576-581.

    Article  CAS  PubMed  Google Scholar 

  • Rose, S.D., Kim, D.H., Amarzguioui, M., Heidel, J.D., Collingwood, M.A., Davis, M.E., Rossi, J.J., and Behlke, M.A. (2005). Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33, 4140-4156.

    Article  CAS  PubMed  Google Scholar 

  • Saydam, O., Glauser, D.L., Heid, I., Turkeri, G., Hilbe, M., Jacobs, A.H., Ackermann, M., and Fraefel, C. (2005). Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 12, 803-812.

    Article  CAS  PubMed  Google Scholar 

  • Schroder, R., Reimann, J., Salmikangas, P., Clemen, C.S., Hayashi, Y.K., Nonaka, I., Arahata, K., and Carpen, O. (2003). Beyond LGMD1A: myotilin is a component of central core lesions and nemaline rods. Neuromuscul Disord 13, 451-455.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, D.S., Ding, H., Kennington, L., Moore, J.T., Schelter, J., Burchard, J., Linsley, P.S., Aronin, N., Xu, Z., and Zamore, P.D. (2006). Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2, e140.

    Article  Google Scholar 

  • Selcen, D., and Engel, A.G. (2004). Mutations in myotilin cause myofibrillar myopathy. Neurology 62, 1363-1371.

    CAS  PubMed  Google Scholar 

  • Tan, P., Briner, J., Boltshauser, E., Davis, M.R., Wilton, S.D., North, K., Wallgren-Pettersson, C., and Laing, N.G. (1999). Homozygosity for a nonsense mutation in the alpha-tropomyosin slow gene TPM3 in a patient with severe infantile nemaline myopathy. Neuromuscul Disord 9, 573-579.

    Article  CAS  PubMed  Google Scholar 

  • Tang, G. (2005). siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30, 106-114.

    Article  CAS  PubMed  Google Scholar 

  • Tawil, R., and Van Der Maarel, S.M. (2006). Facioscapulohumeral muscular dystrophy. Muscle Nerve 34, 1-15.

    Article  CAS  PubMed  Google Scholar 

  • Traverso, M., Gazzerro, E., Assereto, S., Sotgia, F., Biancheri, R., Stringara, S., Giberti, L., Pedemonte, M., Wang, X., Scapolan, S., et al. (2008). Caveolin-3 T78M and T78K missense mutations lead to different phenotypes in vivo and in vitro. Lab Invest 88, 275-283.

    Article  CAS  PubMed  Google Scholar 

  • van Deutekom, J.C., Wijmenga, C., van Tienhoven, E.A., Gruter, A.M., Hewitt, J.E., Padberg, G.W., van Ommen, G.J., Hofker, M.H., and Frants, R.R. (1993). FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 2, 2037-2042.

    Article  PubMed  Google Scholar 

  • van Deutekom, J.C., Lemmers, R.J., Grewal, P.K., van Geel, M., Romberg, S., Dauwerse, H.G., Wright, T.J., Padberg, G.W., Hofker, M.H., Hewitt, J.E., et al. (1996). Identification of the first gene (FRG1) from the FSHD region on human chromosome 4q35. Hum Mol Genet 5, 581-590.

    Google Scholar 

  • Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H., and Meister, G. (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496-507.

    Article  CAS  PubMed  Google Scholar 

  • Wijmenga, C., Frants, R.R., Brouwer, O.F., Moerer, P., Weber, J.L., and Padberg, G.W. (1990). Location of facioscapulohumeral muscular dystrophy gene on chromosome 4. Lancet 336, 651-653.

    Article  CAS  PubMed  Google Scholar 

  • Wijmenga, C., Hewitt, J.E., Sandkuijl, L.A., Clark, L.N., Wright, T.J., Dauwerse, H.G., Gruter, A.M., Hofker, M.H., Moerer, P., Williamson, R., et al. (1992). Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 2, 26-30.

    Article  CAS  PubMed  Google Scholar 

  • Winokur, S.T., Chen, Y.W., Masny, P.S., Martin, J.H., Ehmsen, J.T., Tapscott, S.J., van der Maarel, S.M., Hayashi, Y., and Flanigan, K.M. (2003). Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 12, 2895-2907.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Mao, Q., Eliason, S.L., Harper, S.Q., Martins, I.H., Orr, H.T., Paulson, H.L., Yang, L., Kotin, R.M., and Davidson, B.L. (2004). RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10, 816-820.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Y., and Cullen, B.R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32, 4776-4785.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Y., Cai, X., and Cullen, B.R. (2005). Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymol 392, 371-380.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Kolb, F.A., Brondani, V., Billy, E., and Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21, 5875-5885.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Q. Harper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wallace, L.M., Garwick, S.E., Harper, S.Q. (2010). RNAi Therapy for Dominant Muscular Dystrophies and Other Myopathies. In: Duan, D. (eds) Muscle Gene Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1207-7_7

Download citation

Publish with us

Policies and ethics