Advertisement

Gene Therapy for the Respiratory Muscles

  • Gawiyou Danialou
  • Basil J. Petrof
Chapter

Abstract

The diaphragm and other ventilatory muscles constitute a vital pump for respiration. Death is an inevitable consequence when this pump fails, unless artificial ventilatory support is provided. In many neuromuscular disorders for which gene therapy is being considered (e.g., Duchenne muscular dystrophy), muscle weakness involves the diaphragm and other respiratory muscles, thereby leading to the development of ventilatory failure. Therefore, it is critically important that effective methods be developed for targeting the respiratory muscles by gene therapy approaches. In this chapter, we review the normal physiology of the respiratory muscles and the particular challenges associated with evaluating the efficacy of any future applications of gene therapy to the respiratory muscles in humans. We also review the current state of affairs with respect to preclinical animal models of candidate diseases for respiratory muscle gene therapy, which have pointed to several challenges as well as promising areas for future progress in this area.

Keywords

Respiratory Muscle Duchenne Muscular Dystrophy Pompe Disease Equine Infectious Anemia Virus Golden Retriever Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by grants from the Muscular Dystrophy Association, the Canadian Institutes of Health Research and the Fonds de la recherche en sante du Quebec. The authors have no conflicts of interest to declare.

References

  1. Alter,J., Lou,F., Rabinowitz,A., Yin,H., Rosenfeld,J., Wilton,S.D., Partridge,T.A., and Lu,Q.L. (2006). Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat. Med 12, 175–177.CrossRefPubMedGoogle Scholar
  2. Bellemare,F. and Grassino,A. (1982). Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl. Physiol 53, 1190–1195.CrossRefPubMedGoogle Scholar
  3. Blankinship,M.J., Gregorevic,P., Allen,J.M., Harper,S.Q., Harper,H., Halbert,C.L., Miller,D.A., and Chamberlain,J.S. (2004). Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol. Ther. 10, 671–678.CrossRefPubMedGoogle Scholar
  4. Braun,N.M., Arora,N.S., and Rochester,D.F. (1983). Respiratory muscle and pulmonary function in polymyositis and other proximal myopathies. Thorax 38, 616–623.CrossRefPubMedGoogle Scholar
  5. Cho,W.-K., Ebihara,S., Nalbantoglu,J., Gilbert,R., Massie,B., Holland,P., Karpati,G., and Petrof,B.J. (2000). Modulation of Starling forces and muscle fiber maturity permits adenovirus-mediated gene transfer to adult dystrophic (mdx) mice by the intravascular route. Hum. Gene Ther. 11, 701–714.CrossRefPubMedGoogle Scholar
  6. Cohn,D., Benditt,J.O., Eveloff,S., and McCool,F.D. (1997). Diaphragm thickening during inspiration. J Appl. Physiol 83, 291–296.PubMedGoogle Scholar
  7. Cresawn,K.O., Fraites,T.J., Wasserfall,C., Atkinson,M., Lewis,M., Porvasnik,S., Liu,C., Mah,C., and Byrne,B.J. (2005). Impact of humoral immune response on distribution and efficacy of recombinant adeno-associated virus-derived acid alpha-glucosidase in a model of glycogen storage disease type II. Hum. Gene Ther. 16, 68–80.CrossRefPubMedGoogle Scholar
  8. Danialou,G., Comtois,A.S., Matecki,S., Nalbantoglu,J., Karpati,G., Gilbert,R., Geoffroy,P., Gilligan,S., Tanguay,J.-F., and Petrof,B.J. (2004). Optimization of regional intraarterial naked DNA-mediated transgene delivery to skeletal muscles in a large animal model. Mol. Ther 11, 257–266.Google Scholar
  9. Davis,H.L. and Jasmin,B.J. (1993). Direct gene transfer into mouse diaphragm. FEBS Lett. 333, 146–150.CrossRefPubMedGoogle Scholar
  10. De Bruin,P.F., Ueki,J., Bush,A., Khan,Y., Watson,A., and Pride,N.B. (1997). Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy. Thorax 52, 472–475.CrossRefPubMedGoogle Scholar
  11. De,B., Heguy,A., Leopold,P.L., Wasif,N., Korst,R.J., Hackett,N.R., and Crystal,R.G. (2004). Intrapleural administration of a serotype 5 adeno-associated virus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1-antitrypsin. Mol. Ther. 10, 1003–1010.CrossRefPubMedGoogle Scholar
  12. Decrouy,A., Renaud,J.M., Davis,H.L., Lunde,J.A., Dickson,G., and Jasmin,B.J. (1997). Mini-dystrophin gene transfer in mdx4cv diaphragm muscle fibers increases sarcolemmal stability. Gene Ther. 4, 401–408.CrossRefPubMedGoogle Scholar
  13. DiMarco,A.F., Onders,R.P., Ignagni,A., Kowalski,K.E., and Mortimer,J.T. (2005). Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest 127, 671–678.CrossRefPubMedGoogle Scholar
  14. Ding,E.Y., Hodges,B.L., Hu,H., Vie-Wylie,A.J., Serra,D., Migone,F.K., Pressley,D., Chen,Y.T., and Amalfitano,A. (2001). Long-term efficacy after [E1-, polymerase-] adenovirus-mediated transfer of human acid-alpha-glucosidase gene into glycogen storage disease type II knockout mice. Hum. Gene Ther. 12, 955–965.CrossRefPubMedGoogle Scholar
  15. Fallat,R.J., Jewitt,B., Bass,M., Kamm,B., and Norris,F.H., Jr. (1979). Spirometry in amyotrophic lateral sclerosis. Arch. Neurol. 36, 74–80.PubMedGoogle Scholar
  16. Gregorevic,P., Blankinship,M.J., Allen,J.M., and Chamberlain,J.S. (2008). Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol. Ther. 16, 657–664.CrossRefPubMedGoogle Scholar
  17. Gregorevic,P., Blankinship,M.J., Allen,J.M., Crawford,R.W., Meuse,L., Miller,D.G., Russell,D.W., and Chamberlain,J.S. (2004). Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med 10, 828–834.CrossRefPubMedGoogle Scholar
  18. Gregory,L.G., Waddington,S.N., Holder,M.V., Mitrophanous,K.A., Buckley,S.M., Mosley,K.L., Bigger,B.W., Ellard,F.M., Walmsley,L.E., Lawrence,L., Al-Allaf,F., Kingsman,S., Coutelle,C., and Themis,M. (2004). Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Ther. 11, 1117–1125.CrossRefPubMedGoogle Scholar
  19. Hagstrom,J.E., Hegge,J., Zhang,G., Noble,M., Budker,V., Lewis,D.L., Herweijer,H., and Wolff,J.A. (2004). A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol. Ther. 10, 386–398.CrossRefPubMedGoogle Scholar
  20. Hamnegaard,C.H., Wragg,S., Kyroussis,D., Mills,G., Bake,B., Green,M., and Moxham,J. (1995). Mouth pressure in response to magnetic stimulation of the phrenic nerves. Thorax 50, 620–624.CrossRefPubMedGoogle Scholar
  21. Howell,J.M., Fletcher,S., Kakulas,B.A., O’Hara,M., Lochmuller,H., and Karpati,G. (1997). Use of the dog model for Duchenne muscular dystrophy in gene therapy trials. Neuromuscul. Disord. 7, 325–328.CrossRefPubMedGoogle Scholar
  22. Huard,J., Lochmuller,H., Acsadi,G., Jani,A., Massie,B., and Karpati,G. (1995). The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 2, 107–115.PubMedGoogle Scholar
  23. Jearawiriyapaisarn,N., Moulton,H.M., Buckley,B., Roberts,J., Sazani,P., Fucharoen,S., Iversen,P.L., and Kole,R. (2008). Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol. Ther. 16, 1624–1629.CrossRefPubMedGoogle Scholar
  24. Jimenez,D.F., Lee,C.I., O’Shea,C.E., Kohn,D.B., and Tarantal,A.F. (2005). HIV-1-derived lentiviral vectors and fetal route of administration on transgene biodistribution and expression in rhesus monkeys. Gene Ther. 12, 821–830.CrossRefPubMedGoogle Scholar
  25. Laghi,F., Harrison,M.J., and Tobin,M.J. (1996). Comparison of magnetic and electrical phrenic nerve stimulation in assessment of diaphragmatic contractility. J Appl. Physiol 80, 1731–1742.CrossRefPubMedGoogle Scholar
  26. Laporta,D. and Grassino,A. (1985). Assessment of transdiaphragmatic pressure in humans. J Appl. Physiol 58, 1469–1476.PubMedGoogle Scholar
  27. Liu,F., Nishikawa,M., Clemens,P.R., and Huang,L. (2001). Transfer of full-length Dmd to the diaphragm muscle of Dmd(mdx/mdx) mice through systemic administration of plasmid DNA. Mol. Ther. 4, 45–51.CrossRefPubMedGoogle Scholar
  28. Lu,Q.L., Rabinowitz,A., Chen,Y.C., Yokota,T., Yin,H., Alter,J., Jadoon,A., Bou-Gharios,G., and Partridge,T. (2005). Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc. Natl. Acad. Sci. USA 102, 198–203.CrossRefPubMedGoogle Scholar
  29. Mah,C., Cresawn,K.O., Fraites,T.J., Jr., Pacak,C.A., Lewis,M.A., Zolotukhin,I., and Byrne,B.J. (2005). Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther. 12, 1405–1409.CrossRefPubMedGoogle Scholar
  30. Mah,C., Fraites,T.J., Jr., Cresawn,K.O., Zolotukhin,I., Lewis,M.A., and Byrne,B.J. (2004). A new method for recombinant adeno-associated virus vector delivery to murine diaphragm. Mol. Ther. 9, 458–463.CrossRefPubMedGoogle Scholar
  31. Matecki,S., Dudley,R.W., Divangahi,M., Gilbert,R., Nalbantoglu,J., Karpati,G., and Petrof,B.J. (2004). Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am J Physiol Lung Cell Mol. Physiol 287, L569-L576.CrossRefGoogle Scholar
  32. Maton,B., Petitjean,M., and Cnockaert,J.C. (1990). Phonomyogram and electromyogram relationships with isometric force reinvestigated in man. Eur. J Appl. Physiol Occup. Physiol 60, 194–201.CrossRefPubMedGoogle Scholar
  33. Onders,R.P., Elmo,M., Khansarinia,S., Bowman,B., Yee,J., Road,J., Bass,B., Dunkin,B., Ingvarsson,P.E., and Oddsdottir,M. (2008). Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients. Surg. Endosc. 23:1433–1440Google Scholar
  34. Oster,G. and Jaffe,J.S. (1980). Low frequency sounds from sustained contraction of human skeletal muscle. Biophys. J 30, 119–127.CrossRefPubMedGoogle Scholar
  35. Petitjean,M. and Bellemare,F. (1994). Phonomyogram of the diaphragm during unilateral and bilateral phrenic nerve stimulation and changes with fatigue. Muscle Nerve 17, 1201–1209.CrossRefPubMedGoogle Scholar
  36. Petrof,B.J. (1998). Respiratory muscles as a target for adenovirus-mediated gene therapy. Eur. Respir. J. 11, 492–497.CrossRefPubMedGoogle Scholar
  37. Petrof,B.J., Acsadi,G., Bourdon,J., Matusiewicz,N., and Yang,L. (1996). Phenotypic and immunologic factors affecting plasmid-mediated in vivo gene transfer to rat diaphragm. Am. J. Physiol. 270, L1023-L1030.Google Scholar
  38. Petrof,B.J., Acsadi,G., Jani,A., Massie,B., Bourdon,J., Matusiewicz,N., Yang,L., Lochmuller,H., and Karpati,G. (1995). Efficiency and functional consequences of adenovirus-mediated in vivo gene transfer to normal and dystrophic (mdx) mouse diaphragm. Am J Respir Cell Mol. Biol 13, 508–517.PubMedGoogle Scholar
  39. Phillips,M.F., Quinlivan,R.C., Edwards,R.H., and Calverley,P.M. (2001). Changes in spirometry over time as a prognostic marker in patients with Duchenne muscular dystrophy. Am J Respir Crit Care Med 164, 2191–2194.PubMedGoogle Scholar
  40. Rideau,Y., Jankowski,L.W., and Grellet,J. (1981). Respiratory function in the muscular dystrophies. Muscle Nerve 4, 155–164.CrossRefPubMedGoogle Scholar
  41. Rodino-Klapac,L.R., Janssen,P.M., Montgomery,C.L., Coley,B.D., Chicoine,L.G., Clark,K.R., and Mendell,J.R. (2007). A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl. Med 5, 45.CrossRefPubMedGoogle Scholar
  42. Rucker,M., Fraites,T.J., Jr., Porvasnik,S.L., Lewis,M.A., Zolotukhin,I., Cloutier,D.A., and Byrne,B.J. (2004). Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development 131, 3007–3019.CrossRefPubMedGoogle Scholar
  43. Salva,M.Z., Himeda,C.L., Tai,P.W., Nishiuchi,E., Gregorevic,P., Allen,J.M., Finn,E.E., Nguyen,Q.G., Blankinship,M.J., Meuse,L., Chamberlain,J.S., and Hauschka,S.D. (2007). Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol. Ther. 15, 320–329.CrossRefPubMedGoogle Scholar
  44. Similowski,T., Fleury,B., Launois,S., Cathala,H.P., Bouche,P., and Derenne,J.P. (1989). Cervical magnetic stimulation: a new painless method for bilateral phrenic nerve stimulation in conscious humans. J Appl. Physiol 67, 1311–1318.PubMedGoogle Scholar
  45. Smith,P., Coakley,J., and Edwards,R. (1988). Respiratory muscle training in Duchenne muscular dystrophy. Muscle Nerve 11, 784–785.CrossRefPubMedGoogle Scholar
  46. Stefanutti,D., Benoist,M.R., Scheinmann,P., Chaussain,M., and Fitting,J.W. (2000). Usefulness of sniff nasal pressure in patients with neuromuscular or skeletal disorders. Am J Respir Crit Care Med 162, 1507–1511.PubMedGoogle Scholar
  47. Sun,B., Young,S.P., Li,P., Di,C., Brown,T., Salva,M.Z., Li,S., Bird,A., Yan,Z., Auten,R., Hauschka,S.D., and Koeberl,D.D. (2008). Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy. Mol. Ther. 16, 1366–1371.CrossRefPubMedGoogle Scholar
  48. Sun,B., Zhang,H., Franco,L.M., Young,S.P., Schneider,A., Bird,A., Amalfitano,A., Chen,Y.T., and Koeberl,D.D. (2005). Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol. Ther. 11, 57–65.CrossRefPubMedGoogle Scholar
  49. Szeinberg,A., Tabachnik,E., Rashed,N., McLaughlin,F.J., England,S., Bryan,C.A., and Levison,H. (1988). Cough capacity in patients with muscular dystrophy. Chest 94, 1232–1235.CrossRefPubMedGoogle Scholar
  50. Tarantal,A.F., Lee,C.C., Jimenez,D.F., and Cherry,S.R. (2006). Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum. Gene Ther. 17, 1254–1261.CrossRefPubMedGoogle Scholar
  51. Torrente,Y., D’Angelo,M.G., Li,Z., Del,B.R., Corti,S., Mericskay,M., DeLiso,A., Fassati,A., Paulin,D., Comi,G.P., Scarlato,G., and Bresolin,N. (2000). Transplacental injection of somite-derived cells in mdx mouse embryos for the correction of dystrophin deficiency. Hum. Mol. Genet. 9, 1843–1852.CrossRefPubMedGoogle Scholar
  52. Ueki,J., De Bruin,P.F., and Pride,N.B. (1995). In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax 50, 1157–1161.CrossRefPubMedGoogle Scholar
  53. Vilozni,D., Bar-Yishay,E., Gur,I., Shapira,Y., Meyer,S., and Godfrey,S. (1994). Computerized respiratory muscle training in children with Duchenne muscular dystrophy. Neuromuscul. Disord. 4, 249–255.CrossRefPubMedGoogle Scholar
  54. Wanke,T., Toifl,K., Merkle,M., Formanek,D., Lahrmann,H., and Zwick,H. (1994). Inspiratory muscle training in patients with Duchenne muscular dystrophy. Chest 105, 475–482.CrossRefPubMedGoogle Scholar
  55. Yang,L., Lochmuller,H., Luo,J., Massie,B., Nalbantoglu,J., Karpati,G., and Petrof,B.J. (1998). Adenovirus-mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (MDX) mice. Gene Ther. 5, 369–379.CrossRefPubMedGoogle Scholar
  56. Zhang,G., Budker,V., Williams,P., Subbotin,V., and Wolff,J.A. (2001). Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 12, 427–438.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Meakins-Christie LaboratoriesMcGill UniversityMontrealCanada

Personalised recommendations