Gene Therapy Clinical Trials for Muscular Dystrophies



The major challenge for therapy of Duchenne and related muscular dystrophies is the need to treat multiple muscles for clinical benefit. After many years of laboratory studies developing systems for gene transfer into muscle, the last 5 years have seen major steps forward with the generation of genetic treatments that can be administered systemically. Consequently, a number of different approaches have been taken through to clinical trials, including adeno-associated viral vector mediated gene delivery, plasmid mediated gene delivery, and the use of antisense oligonucleotides to modify splicing of the primary transcript to restore the reading frame. Cell transfer can also be used as a means of gene delivery. Associated with clinical trials has been the consideration of appropriate pre-clinical safety testing and outcome measures for assessing efficacy for regulatory approval. Although many of the trials look promising and offer hope for the future, it is important to understand that therapeutic approval can take considerable time and requires significant funding and input from biotechnology/pharmaceutical companies.


Muscular Dystrophy Dystrophin Expression Safety Pharmacology Extensor Digitorum Brevis Mediate Gene Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is a member of the MDEX Consortium and is participating in the analysis of samples from the clinical trials of exon-skipping using PMOs. The author has no other conflicts of interest.

Many of the thoughts and comments contained in this chapter have arisen out of conversations at various meetings with a range of colleagues. The author is grateful to the members of the MDEX consortium (funded by the UK Department of Health), Treat-NMD (funded by the EU), and members of the Wells laboratory. Pre-clinical studies in the author’s laboratory have been funded by the UK Department of Health, Big Lottery Fund, Muscular Dystrophy Campaign, Parent Project Muscular Dystrophy, and the Gavriel Meier Trust.


  1. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT. (2009). Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30, 293–299.CrossRefPubMedGoogle Scholar
  2. Alter, J., Lou, F., Rabinowitz, A., Yin, H., Rosenfeld, J., Wilton, S.D., Partridge, T.A., Lu, Q.L. (2006). Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12, 175–177.CrossRefPubMedGoogle Scholar
  3. Banks, G.B., Chamberlain, J.S. (2008). The value of mammalian models for duchenne muscular dystrophy in developing therapeutic strategies. Curr Top Dev Biol 84, 431–453.CrossRefPubMedGoogle Scholar
  4. Bauer, S., Kirschning, C.J., Häcker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., Lipford, G.B. (2001). Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98, 9237–9242.CrossRefPubMedGoogle Scholar
  5. Chen, M., Li, H.J., Fang, Q., Goodwin, T.G., Florendo, J.A., Law, P.K. (1992). Dystrophin cytochemistry in mdx mouse muscles injected with labeled normal myoblasts. Cell Transplant 1, 17–22.PubMedGoogle Scholar
  6. Colussi, C., Gurtner, A., Rosati, J., Illi, B., Ragone, G., Piaggio, G., Moggio, M., Lamperti, C., D’Angelo, G., Clementi, E., et al. (2009). Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 23, 2131–2141.Google Scholar
  7. Cossu, G., Sampaolesi, M. (2007) New therapies for Duchenne muscular dystrophy: Challenges, prospects and clinical trials. Trends Mol Med 13, 520–526.CrossRefPubMedGoogle Scholar
  8. Fan, Y., Maley, M., Beilharz, M., Grounds, M. (1996). Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 19, 853–860.CrossRefPubMedGoogle Scholar
  9. Ferrer, A., Wells, K.E., Wells, D.J. (2000). Immune responses to dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Gene Ther 7, 1439–1446.CrossRefPubMedGoogle Scholar
  10. Ferrer, A., Gollins, H., Wells, K.E., Dickson, G., Wells, D.J. (2004) Long term expression of full-length human dystrophin in transgenic mdx mice expressing truncated human dystrophins. Gene Ther 11, 884–893.CrossRefPubMedGoogle Scholar
  11. Foster, K., Foster, H., Dickson, J.G. (2006). Gene therapy progress and prospects: Duchenne muscular dystrophy. Gene Ther 13, 1677–1685.CrossRefPubMedGoogle Scholar
  12. Grounds, M.D. (1996). Commentary on the present state of knowledge for myoblast transfer therapy. Cell Transplant 5, 431–433.CrossRefPubMedGoogle Scholar
  13. Hagstrom, J.E., Hegge, J., Zhang, G., Noble, M., Budker, V., Lewis, D.L., Herweijer, H., Wolff, J.A. (2004). A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10, 386–398.CrossRefPubMedGoogle Scholar
  14. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529.CrossRefPubMedGoogle Scholar
  15. Kinali, M., Arechavala-Gomeza, V., Feng, L., Cirak, S., Hunt, D., Adkin, C., Guglieri, M., Ashton, E., Abbs, S., Nihoyannopoulos, P., Garralda, M.E., Rutherford, M., McCulley, C., Popplewell, L., Graham, I.R., Dickson, G., Wood, M.J., Wells, D.J., Wilton, S.D., Kole, R., Straub, V., Bushby, K., Sewry, C., Morgan, J.E., Muntoni, F. (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8, 918–928.Google Scholar
  16. Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., Kunkel, L.M. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517.CrossRefPubMedGoogle Scholar
  17. Lai, Y., Thomas, G.D., Yue, Y., Yang, H.T., Li, D., Long, C., Judge, L., Bostick, B., Chamberlain, J.S., Terjung, R.L., Duan, D. (2009). Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119, 624–635.CrossRefPubMedGoogle Scholar
  18. Mavrogeni, S., Papavasiliou, A., Douskou, M., Kolovou, G., Papadopoulou, E., Cokkinos, D.V. (2009). Effect of deflazacort on cardiac and sternocleidomastoid muscles in Duchenne muscular dystrophy: A magnetic resonance imaging study. Eur J Paediatr Neurol 13, 34–40.CrossRefPubMedGoogle Scholar
  19. Mayhew, J.E., Florence, J.M., Mayhew, T.P., Henricson, E.K., Leshner, R.T., McCarter, R.J., Escolar, D.M. (2007). Reliable surrogate outcome measures in multicenter clinical trials of Duchenne muscular dystrophy. Muscle Nerve 35, 36–42.CrossRefPubMedGoogle Scholar
  20. McDonald, C.M., Widman, L.M., Walsh, D.D., Walsh, S.A., Abresch, R.T. (2005). Use of step activity monitoring for continuous physical activity assessment in boys with Duchenne muscular dystrophy. Arch Phys Med Rehabil 86, 802–808.CrossRefPubMedGoogle Scholar
  21. Mendell, J.R., Csimma, C., McDonald, C.M., Escolar, D.M., Janis, S., Porter, J.D., Hesterlee, S.E., Howell, R.R. (2007) Challenges in drug development for muscle disease: A stakeholders’ meeting. Muscle Nerve 35, 8–16.CrossRefPubMedGoogle Scholar
  22. Mendell, J.R., Rodino-Klapac, L.R., Rosales-Quintero, X., Kota, J., Coley, B.D., Galloway, G., Craenen, J.M., Lewis, S., Malik, V., Shilling, C., et al. (2009). Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann Neurol 66, 290–297.Google Scholar
  23. Mercuri, E., Mayhew, A., Muntoni, F., Messina, S., Straub, V., Van Ommen, G.J., Voit, T., Bertini, E., Bushby, K., TREAT-NMD Neuromuscular Network. (2008). Towards harmonisation of outcome measures for DMD and SMA within TREAT-NMD; report of three expert workshops: TREAT-NMD/ENMC workshop on outcome measures, 12th–13th May 2007, Naarden, The Netherlands; TREAT-NMD workshop on outcome measures in experimental trials for DMD, 30th June–1st July 2007, Naarden, The Netherlands; conjoint Institute of Myology TREAT-NMD meeting on physical activity monitoring in neuromuscular disorders, 11th July 2007, Paris, France. Neuromuscul Disord 18, 894–903.Google Scholar
  24. Muntoni, F., Wells, D. (2007). Genetic treatments in muscular dystrophies. Curr Opin Neurol 20, 590–594.CrossRefPubMedGoogle Scholar
  25. Neri, M., Torelli, S., Brown, S., Ugo, I., Sabatelli, P., Merlini, L., Spitali, P., Rimessi, P., Gualandi, F., Sewry, C., Ferlini, A., Muntoni, F. (2007). Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord 17, 913–918.CrossRefPubMedGoogle Scholar
  26. Partridge, T.A., Morgan, J.E., Coulton, G.R., Hoffman, E.P., Kunkel, L.M. (1989). Conversion of mdx myofibers from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337, 176–179.CrossRefPubMedGoogle Scholar
  27. Rodino-Klapac, L.R., Janssen, P.M., Montgomery, C.L., Coley, B.D., Chicoine, L.G., Clark, K.R., Mendell, J.R. (2007). A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 5, 45.Google Scholar
  28. Romero, N.B., Braun, S., Benveniste, O., Leturcq, F., Hogrel, J.Y., Morris, G.E., Barois, A., Eymard, B., Payan, C., Ortega, V., et al. (2004). Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther 15, 1065–1076.CrossRefPubMedGoogle Scholar
  29. Sampaolesi, M., Torrente, Y., Innocenzi, A., Tonlorenzi, R., D’Antona, G., Pellegrino, M.A., Barresi, R., Bresolin, N., De Angelis, M.G., Campbell, K.P., Bottinelli, R., Cossu, G. (2003). Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492.CrossRefPubMedGoogle Scholar
  30. Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., Innocenzi, A., Mognol, P., Thibaud, J.L., Galvez, B.G., Barthélémy, I., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579.CrossRefPubMedGoogle Scholar
  31. Sander, M., Chavoshan, B., Harris, S.A., Iannaccone, S.T., Stull, J.T., Thomas, G.D., Victor, R.G. (2000). Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci USA 97, 13818–13823.CrossRefPubMedGoogle Scholar
  32. Skuk, D., Roy, B., Goulet, M., Chapdelaine, P., Bouchard, J.P., Roy, R., Dugré, F.J., Lachance, J.G., Deschênes, L., Hélène, S., Sylvain, M., Tremblay, J.P. (2004). Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 9, 475–482.CrossRefPubMedGoogle Scholar
  33. Skuk, D., Goulet, M., Roy, B., Chapdelaine, P., Bouchard, J.P., Roy, R., Dugré, F.J., Sylvain, M., Lachance, J.G., Deschênes, L., Senay, H., Tremblay, J.P. (2006). Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65, 371–386.CrossRefPubMedGoogle Scholar
  34. Skuk, D., Goulet, M., Roy, B., Piette, V., Côté, C.H., Chapdelaine, P., Hogrel, J.Y., Paradis, M., Bouchard, J.P., Sylvain, M., Lachance, J.G., Tremblay, J.P. (2007). First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: Eighteen months follow-up. Neuromuscul Disord 17, 38–46.CrossRefPubMedGoogle Scholar
  35. Spurney, C.F., Gordish-Dressman, H., Guerron, A.D., Sali, A., Pandey, G.S., Rawat, R., Van Der Meulen, J.H., Cha, H.J., Pistilli, E.E., Partridge, T.A., Hoffman, E.P., Nagaraju, K. (2009). Preclinical drug trials in the mdx mouse: Assessment of reliable and sensitive outcome measures. Muscle Nerve 39, 591–602.Google Scholar
  36. Takeshima, Y., Yagi, M., Wada, H., Ishibashi, K., Nishiyama, A., Kakumoto, M., Sakaeda, T., Saura, R., Okumura, K., Matsuo, M. (2006). Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy. Pediatr Res 59, 690–694.CrossRefPubMedGoogle Scholar
  37. Thomas, G.D., Sander, M., Lau, K.S., Huang, P.L., Stull, J.T., Victor, R.G. (1998). Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci USA 95, 15090–15095.CrossRefPubMedGoogle Scholar
  38. Toumi, H., Hegge, J., Subbotin, V., Noble, M., Herweijer, H., Best, T.M., Hagstrom, J.E. (2006). Rapid intravascular injection into limb skeletal muscle: A damage assessment study. Mol Ther 13, 229–236.CrossRefPubMedGoogle Scholar
  39. van Deutekom, J.C., Janson, A.A., Ginjaar, I.B., Frankhuizen, W.S., Aartsma-Rus, A., Bremmer-Bout, M., den Dunnen, J.T., Koop, K., van der Kooi, A.J., Goemans, N.M., et al. (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357, 2677–2686.CrossRefPubMedGoogle Scholar
  40. Walter, G., Cordier, L., Bloy, D., Sweeney, H.L. (2005) Noninvasive monitoring of gene correction in dystrophic muscle. Magn Reson Med 54, 1369–1376.CrossRefPubMedGoogle Scholar
  41. Wang, Z., Kuhr, C.S., Allen, J.M., Blankinship, M., Gregorevic, P., Chamberlain, J.S., Tapscott, S.J., Storb, R. (2007). Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15, 1160–1166.PubMedGoogle Scholar
  42. Wells, D.J., Wells, K.E. (2005). What do animal models have to tell us regarding Duchenne Muscular Dystrophy? Acta Myol 24, 172–180.PubMedGoogle Scholar
  43. Wells, D.J., Wells, K.E., Asante, E.A., Turner, G., Sunada, Y., Campbell, K.P., Walsh, F.S., G.Dickson. (1995). Human full length and minidystrophin expression in transgenic mdx mice: Implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet 4, 1245–1250.CrossRefPubMedGoogle Scholar
  44. Willmann, R., Possekel, S., Dubach-Powell, J., Meier, T., Ruegg, M.A. (2009). Mammalian animal models for Duchenne muscular dystrophy. Neuromuscul Disord 19(4), 241–249.Google Scholar
  45. Yokota, T., Lu, Q.L., Partridge, T., Kobayashi, M., Nakamura, A., Takeda, S., Hoffman, E. (2009). Efficacy of systemic morpholino exon-skipping in duchenne dystrophy dogs. Ann Neurol 65, 667–676.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental HealthHammersmith Hospital Campus, Imperial College LondonLondonUK

Personalised recommendations