Advertisement

Muscle as a Target for Genetic Vaccine

  • Yan Zhi
  • Guangping Gao
Chapter

Abstract

The complexity of microbe infections requires novel approaches to vaccine design. It is particularly challenging to develop a safe and effective vaccine against human immunodeficiency virus (HIV)-1. The versatility of DNA vaccination provides new perspectives. Recombinant subunit vaccines derived from adenoviruses and adeno-associated viruses are under extensive development as HIV-1 vaccines. For all of those vaccine vector platforms, muscle appears to be a practical, effective, and safe target. A vaccine strategy based on initial priming with DNA vaccine and/or viral vector vaccine and then boosting with a second viral vector vaccine has shown promise in HIV-1 vaccine development. The recent progress in DNA vaccines and viral vector subunit vaccines, particularly those derived from novel serotypes of adenovirus and adeno-associated virus, is reviewed here.

Keywords

Vaccine Vector Modify Vaccinia Ankara Human Immunodeficiency Virus Vaccine Genetic Vaccine Intramuscular Immunization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ashok, M.S., Rangarajan, P.N. (2002). Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences: studies in a murine intracerebral virus challenge model. Vaccine 20, 1563–1570.CrossRefPubMedGoogle Scholar
  2. Bagarazzi, M.L., Boyer, J.D., Javadian, M.A., Chattergoon, M., Dang, K., Kim, G., Shah, J., Wang, B., Weiner, D.B. (1997). Safety and immunogenicity of intramuscular and intravaginal delivery of HIV-1 DNA constructs to infant chimpanzees. J Med Primatol 26, 27–33.PubMedGoogle Scholar
  3. Banchereau, J., Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392, 245–252.CrossRefPubMedGoogle Scholar
  4. Bantel-Schaal, U., Delius, H., Schmidt, R., zur Hausen, H. (1999). Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol 73, 939–947.Google Scholar
  5. Barouch, D.H., Yang, Z.Y., Kong, W.P., Korioth-Schmitz, B., Sumida, S.M., Truitt, D.M., Kishko, M.G., Arthur, J.C., Miura, A., Mascola, J.R., et al. (2005). A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J Virol 79, 8828–8834.CrossRefPubMedGoogle Scholar
  6. Barry, M.A., Johnston, S.A. (1997) Biological features of genetic immunization. Vaccine 15, 788–791.CrossRefPubMedGoogle Scholar
  7. Berns, K.I., W.W. Hauswirth. (1979). Adeno-associated viruses. Adv Virus Res 25, 407–449.CrossRefPubMedGoogle Scholar
  8. Bojak, A., Hammer, D., Wolf, H., Wagner, R. (2002). Muscle specific versus ubiquitous expression of Gag based HIV-1 DNA vaccines: a comparative analysis. Vaccine 20, 1975–1979.CrossRefPubMedGoogle Scholar
  9. Carter, P.J., Samulski, R.J. (2000). Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 6, 17–27.PubMedGoogle Scholar
  10. Casares, S., Inaba, K., Brumeanu, T.D., Steinman, R.M., Bona, C.A. (1997). Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 186, 1481–1486.CrossRefPubMedGoogle Scholar
  11. Casimiro, D.R., Chen, L., Fu, T.M., Evans, R.K., Caulfield, M.J., Davies, M.E., Tang, A., Chen, M., Huang, L., Harris, V., et al. (2003) Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol 77, 6305–6313.CrossRefPubMedGoogle Scholar
  12. Casimiro, D.R., Wang, F., Schleif, W.A., Liang, X., Zhang, Z.Q., Tobery, T.W., Davies, M.E., McDermott, A.B., O’Connor, D.H., Fridman, A., et al. (2005). Attenuation of simian immunodeficiency virus SIVmac239 infection by prophylactic immunization with DNA and recombinant adenoviral vaccine vectors expressing Gag. J Virol 79, 15547–15555.CrossRefPubMedGoogle Scholar
  13. Cazeaux, N., Bennasser, Y., Vidal, P.L., Li, Z., Paulin, D., Bahraoui, E. (2002). Comparative study of immune responses induced after immunization with plasmids encoding the HIV-1 Nef protein under the control of the CMV-IE or the muscle-specific desmin promoter. Vaccine 20, 3322–3331.CrossRefPubMedGoogle Scholar
  14. Chirmule, N., Propert, K., Magosin, S., Qian, Y., Qian, R., Wilson, J. (1999). Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6, 1574–1583.CrossRefPubMedGoogle Scholar
  15. Ciernik, I.F., Berzofsky, J.A., Carbone, D.P. (1996). Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 156, 2369–2375.PubMedGoogle Scholar
  16. Cranenburgh, R.M., Hanak, J.A., Williams, S.G., Sherratt, D.J. (2001). Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 29, E26.CrossRefGoogle Scholar
  17. Danko, I., Williams, P., Herweijer, H., Zhang, G., Latendresse, J.S., Bock, I., Wolff, J.A. (1997). High expression of naked plasmid DNA in muscles of young rodents. Hum Mol Genet 6, 1435–1443.CrossRefPubMedGoogle Scholar
  18. Davis, H.L., Millan, C.L., Watkins S.C. (1997). Immune-mediated destruction of transfected muscle fibers after direct gene transfer with antigen-expressing plasmid DNA. Gene Ther 4, 181–188.CrossRefPubMedGoogle Scholar
  19. Delogu, G., Li, A., Repique, C., Collins, F., Morris, S. (2002). DNA vaccine combinations expressing either tissue plasminogen activator signal sequence fusion proteins or ubiquitin-conjugated antigens induce sustained protective immunity in a mouse model of pulmonary tuberculosis. Infect Immun 70, 292–302.CrossRefPubMedGoogle Scholar
  20. Donnelly, J.J., Ulmer, J.B., Shiver, J.W., Liu, M.A. (1997). DNA vaccines. Annu Rev Immunol 15, 617–648.CrossRefPubMedGoogle Scholar
  21. During, M.J., Symes, C.W., Lawlor, J.L., Dunning, J., Fitzsimons, H.L., Poulsen, D., Leone, P., Xu, R., Dicker, B., Lipski, J., et al. (2000). An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287, 1453–1460.CrossRefPubMedGoogle Scholar
  22. Farina, S.F., Gao, G.P., Xiang, Z.Q., Rux, J.J., Burnett, R.M., Alvira, M.R., Marsh, J., Ertl, H.C., Wilson, J.M. (2001). Replication-defective vector based on a chimpanzee adenovirus. J Virol 75, 11603–11613.CrossRefPubMedGoogle Scholar
  23. Fitzgerald, J.C., Gao, G.P., Reyes-Sandoval, A., Pavlakis, G.N., Xiang, Z.Q., Wlazlo, A.P., Giles-Davis, W., Wilson, J.M., Ertl, H.C. (2003). A simian replication-defective adenoviral recombinant vaccine to HIV-1 Gag. J Immunol 170, 1416–1422.PubMedGoogle Scholar
  24. Fronteneau, J.F., Larsson, M., Bhardwaj, N. (2002). Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Curr Opin Immunol 14, 471–477.CrossRefGoogle Scholar
  25. Gao, G.P., Alvira, M.R., Wang, L., Calcedo, R., Johnston, J., Wilson, J.M. (2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99, 11854–11859.CrossRefPubMedGoogle Scholar
  26. Gao, G., Alvira, M.R., Somanathan, S., Lu, Y., Vandenberghe, L.H., Rux, J.J., Calcedo, R., Sanmiguel, J., Abbas, Z., Wilson, J.M. (2003). Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 100, 6081–6086.CrossRefPubMedGoogle Scholar
  27. Gao, G., Vandenberghe, L.H., Alvira, M.R., Lu, Y., Calcedo, R., Zhou, X., Wilson, J.M. (2004). Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78, 6381–6388.CrossRefPubMedGoogle Scholar
  28. Garg, S., Oran, A.E., Hon, H., Jacob, J. (2004). The hybrid cytomegalovirus enhancer/chicken beta-actin promoter along with woodchuck hepatitis virus posttranscriptional regulatory element enhances the protective efficacy of DNA vaccines. J Immunol 173, 550–558.PubMedGoogle Scholar
  29. Garmory, H.S., Brown, K.A., Titball, R.W. (2003). DNA vaccines: Improving expression of antigens. Genet Vaccines Ther 1, 2.CrossRefPubMedGoogle Scholar
  30. Gaschen, B., Taylor, J., Yusim, K., Foley, B., Gao, F., Lang, D., Novitsky, V., Haynes, B., Hahn, B.H., Bhattacharya, T., et al. (2002). Diversity considerations in HIV-1 vaccine selection. Science 296, 2354–2360.CrossRefPubMedGoogle Scholar
  31. Girod, A., Ried, M., Wobus, C., Lahm, H., Leike, K., Kleinschmidt, J., Deléage, G., Hallek, M. (1999). Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 5, 1052–1056.CrossRefPubMedGoogle Scholar
  32. Hartman, Z.C., Appledorn, D.M., Amalfitano, A. (2008). Adenovirus vector induced innate immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 132, 1–14.CrossRefPubMedGoogle Scholar
  33. Higgins, D., Marshall, J.D., Traquina, P., Van Nest, G., Livingston, B.D. (2007). Immunostimulatory DNA as a vaccine adjuvant. Expert Rev Vaccines 6, 747–759.CrossRefPubMedGoogle Scholar
  34. Hong, S.S., Habib, N.A., Franqueville, L., Jensen, S., Boulanger, P.A. (2003). Identification of adenovirus (Ad) penton base neutralizing epitopes by use of sera from patients who had received conditionally replicative Ad (AddI1520) for treatment of liver tumors. J Virol 77, 10366–10375.CrossRefPubMedGoogle Scholar
  35. Ikemura, T. (1982). Correlation between the abundance of yeast transfer RNAs and the occurrence of the retrospective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158, 573–597.CrossRefPubMedGoogle Scholar
  36. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2, 13–34.PubMedGoogle Scholar
  37. Ito, H., Sommer, M.H., Zerboni, L., He, H., Boucaud, D., Hay, J., Ruyechan, W., Arvin, A.M. (2003). Promoter sequences of varicella-zoster virus glycoprotein 1 targeted by cellular transactivating factor Sp1 and USF determine virulence in skin and T cells in SCIDhu mice in vivo. J Virol 77, 489–498.CrossRefPubMedGoogle Scholar
  38. Johnson, P.R., Schnepp, B.C., Connell, M.J., Rohne, D., Robinson, S., Krivulka, G.R., Lord, C.I., Zinn, R., Montefiori, D.C., Letvin, N.L., et al. (2005). Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J Virol 79, 955–965.CrossRefPubMedGoogle Scholar
  39. Klinman, D.M., Takeshita, F., Kamstrup, S., Takeshita, S., Ishii, K., Ichino, M., Yamada, H. (2000). DNA vaccines: capacity to induce auto-immunity and tolerance. Dev Biol (Basel) 104, 45–51.Google Scholar
  40. Kozak, M. (1987). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196, 947–950.CrossRefPubMedGoogle Scholar
  41. Kozak, M. (1997). Recognition of AUG and alternative initiator codons is augmented by G in position + 4 but is not generally affected by the nucleotides in positions + 5 and + 6. EMBO J 16, 2482–2492.CrossRefPubMedGoogle Scholar
  42. Kurth, R. (1995). Risk potential of the chromosomal insertion of foreign DNA. Ann NY Acad Sci 772, 140–151.CrossRefPubMedGoogle Scholar
  43. Kutzler, M.A., Weiner, D.B. (2008). DNA vaccines: ready for prime time? Nat Rev Genet 9, 776–788.CrossRefPubMedGoogle Scholar
  44. Le, T.P., Coonan, K.M., Hedstrom, R.C., Charoenvit, Y., Sedegah, M., Epstein, J.E., Kumar, S., Wang, R., Doolan, D.L., Maguire, J.D., et al. (2000). Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18, 1893–1901.CrossRefPubMedGoogle Scholar
  45. Ledwith, B.J., Manam, S., Troilo, P.J., Barnum, A.B., Pauley, C.J., Griffiths, T.G. 2nd., Harper, L.B., Beare, C.M., Bagdon, W.J., Nichols, W.W. (2000). Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 43, 258–272.Google Scholar
  46. Leitner, W.W., Ying, H., Restifo, N.P. (2000). DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 18, 765–777.CrossRefGoogle Scholar
  47. Levitsky, H.I. (1997). Accessories for naked DNA vaccines. Nat Biotech 15, 619–620.CrossRefGoogle Scholar
  48. Levy, J.A. (1993). Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57, 183–289.PubMedGoogle Scholar
  49. Li, Z., Howard, A., Kelley, C., Delogu, G., Collins, F., Morris, S. (1999). Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect Immun 67, 4780–4786.PubMedGoogle Scholar
  50. Lin, J., Zhi, Y., Mays, L., Wilson, J.M. (2007). Vaccines based on novel adeno-associated virus vectors elicit aberrant CD8+ T-cell responses in mice. J Virol 81, 11840–11849.CrossRefPubMedGoogle Scholar
  51. Lin, J., Calcedo, R., Vandenberghe, L.H., Figueredo, J.M., Wilson, J.M. (2008). Impact of preexisting vector immunity on the efficacy of adeno-associated virus-based HIV-1 Gag vaccines. Hum Gene Ther 19, 663–669.CrossRefPubMedGoogle Scholar
  52. Liu, M.A., Ulmer, J.B. (2005). Human clinical trials of plasmid DNA vaccines. Adv Genet 55, 25–40.CrossRefPubMedGoogle Scholar
  53. MacGregor, R.R., Boyer, J.D., Ugen, K.E., Lacy, K.E., Gluckman, S.J., Bagarazzi, M.L., Chattergoon, M.A., Baine, Y., Higgins, T.J., Ciccarelli, R.B., et al. (1998). First human trial of a DNA-based vaccine for treatment of human Immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178, 92–100.PubMedGoogle Scholar
  54. MacGregor, R.R., Boyer, J.D., Ciccarelli, R.B., Ginsberg, R.S., Weiner, D.B. (2000). Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type 1 env/rev vaccine in HIV-infected recipients: follow-up data. J Infect Dis 181, 406.CrossRefPubMedGoogle Scholar
  55. Mairhofer, J., Pfaffenzeller, I., Merz, D., Grabherr. R. (2007). A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol 3, 83–89.Google Scholar
  56. Manam, S., Ledwith, B.J., Barnum, A.B., Troilo, P.J., Pauley, C.J., Harper, L.B., Griffiths, T.G. II, Niu, Z., Denisova, L., Follmer, T.T., et al. (2000). Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology 43, 273–281.Google Scholar
  57. Manning, W.C., Paliard, X., Zhou, S., Pat Bland, M., Lee, A.Y., Hong, K., Walker, C.M., Escobedo, J.A., Dwarki, V. (1997). Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 71, 7960–7962.PubMedGoogle Scholar
  58. Mattapallil, J.J., Douek, D.C., Buckler-White, A., Montefiori, D., Letvin, N.L., Nabel, G.J., Roederer, M. (2006). Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J Exp Med 203, 1533–1541.CrossRefPubMedGoogle Scholar
  59. Medzhitov, R., Janeway, Jr., C. (2000). Innate immune recognition: mechanisms and pathways. Immunol Rev 173, 89–97.CrossRefPubMedGoogle Scholar
  60. Mincheff, M., Tchakarov, S., Zoubak, S., Loukinov, D., Botev, C., Altankova, I., Georgiev, G., Petrov, S., Meryman, H.T. (2000). Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a Phase I/II clinical trial. Eur Urol 38, 208–217.CrossRefPubMedGoogle Scholar
  61. Mizuguchi, H., Kay, M.A. (1999). A simple method for constructing E1- and E1/E4-deleted recombinant adenoviral vectors. Hum Gene Ther 10, 2013–2017.CrossRefPubMedGoogle Scholar
  62. Molinier-Frenkel, V., Prévost-Blondel, A., Hong, S.S., Lengagne, R., Boudaly, S., Magnusson, M.K., Boulanger, P., Guillet, J.G. (2003). The maturation of murine dendritic cells induced by human adenovirus is mediated by the fiber knob domain. J Biol Chem 278, 37175–37182.CrossRefPubMedGoogle Scholar
  63. Monahan, P.E., Samulski, R.J. (2000). Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6, 433–440.CrossRefPubMedGoogle Scholar
  64. Montgomery, D.L., Shiver, J.W., Leander, K.R., Perry, H.C., Friedman, A., Martinez, D., Ulmer, J.B., Donnelly, J.J., Liu, M.A. (1993). Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 12, 777–783.CrossRefPubMedGoogle Scholar
  65. Morelli, A.E., Larregina, A.T., Ganster, R.W., Zahorchak, A.F., Plowey, J.M., Takayama, T., Logar, A.J., Robbins, P.D., Falo, L.D., Thomson, A.W. (2000). Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 74, 9617–9628.CrossRefPubMedGoogle Scholar
  66. Moskalenko, M., Chen, L., van Roey, M., Donahue, B.A., Snyder, R.O., McArthur, J.G., Patel, S.D. (2000). Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 74, 1761–1766.CrossRefPubMedGoogle Scholar
  67. O’Hagan, D.T., Singh, M., Ulmer, J.B. (2006). Microparticle-based technologies for vaccines. Methods 40, 10–19.CrossRefPubMedGoogle Scholar
  68. Offit, P.A. et al. (2005). The Cutter incident, 50 years later. N Engl J Med 352, 1411–1412.CrossRefPubMedGoogle Scholar
  69. Olive, M., Eisenlohr, L., Flomenberg, N., Hsu, S., Flomenberg, P. (2002). The adenovirus capsid protein hexon contains a highly conserved human CD4+ T-cell epitope. Hum Gene Ther 13, 1167–1178.CrossRefPubMedGoogle Scholar
  70. Pal, R., Yu, Q., Wang, S., Kalyanaraman, V.S., Nair, B.C., Hudacik, L., Whitney, S., Keen, T., Hung, C.L., Hocker, L., et al. (2006). Definitive toxicology and biodistribution study of a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 (HIV-1) vaccine in rabbits. Vaccine 24, 1225–1234.CrossRefPubMedGoogle Scholar
  71. Peng, B., Wang, L.R., Gómez-Román, V.R., Davis-Warren, A., Montefiori, D.C., Kalyanaraman, V.S., Venzon, D., Zhao, J., Kan, E., Rowell, T.J., et al. (2005). Replicating rather than non-replicating Adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high titer antibodies. J Virol 79, 10200–10209.CrossRefPubMedGoogle Scholar
  72. Philpott, N.J., Nociari, M., Elkon, K.B., Falck-Pedersen, E. (2004). Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci USA 101, 6200–6205.CrossRefPubMedGoogle Scholar
  73. Qiu, J.T., Liu, B., Tian, C., Pavlakis, G., Yu, X.F. (2000). Enhancement of primary and secondary cellular immune responses against human immunodeficiency virus type 1 gag by using DNA expression vectors that target Gag antigen to the secretory pathway. J Virol 74, 5997–6005.CrossRefPubMedGoogle Scholar
  74. Robert-Guroff, M. (2007). Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol 18, 546–556.CrossRefPubMedGoogle Scholar
  75. Roberts, D.M., Nanda, A., Havenga, M.J.E., Abbink, P., Lynch, D.M., Ewald, B.A., Liu, J., Thorner, A.R., Swanson, P.E., Gorgone, D.A., et al. (2006). Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 441, 239–243.CrossRefPubMedGoogle Scholar
  76. Schnepp, B.C., Clark, K.R., Klemanski, D.L., Pacak, C.A., Johnson, P.R. (2003). Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J Virol 77, 3495–3504.CrossRefPubMedGoogle Scholar
  77. Sheets, R.L., Stein, J., Manetz, T.S., Duffy, C., Nason, M., Andrews, C., Kong, W.P., Nabel, G.J., Gomez, P.L. (2006). Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. Toxicol Sci 91, 610–619.CrossRefPubMedGoogle Scholar
  78. Shi, W., Arnold, G.S., Bartlett, J.S. (2001). Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 12, 1697–1711.CrossRefPubMedGoogle Scholar
  79. Shiver, J.W., Fu, T.M., Chen, L., Casimiro, D.R., Davies, M.E., Evans, R.K., Zhang, Z.Q., Simon, A.J., Trigona, W.L., Dubey, S.A. (2002). Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335.CrossRefPubMedGoogle Scholar
  80. Stevenson, F.K., Rice, J., Ottensmeier, C.H., Thirdborough, S.M., Zhu D. (2004). DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 199, 156–180.CrossRefPubMedGoogle Scholar
  81. Sun, J.Y., Chatterjee, S., Wong, Jr., K.K. (2002). Immunogenic issues concerning recombinant adeno-associated virus vectors for gene therapy. Curr Gene Ther 2, 485–500.CrossRefPubMedGoogle Scholar
  82. Tacket, C.O., Roy, M.J., Widera, G., Swain, W.F., Broome, S., Edelman, R. (1999). Phase I safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17, 2826–2829.CrossRefPubMedGoogle Scholar
  83. Tatsis, N., Robinson, E.R., Giles-Davis, W., McCoy, K., Gao, G.P., Wilson, J.M., Ertl, H.C. (2006). Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther 13, 421–429.CrossRefPubMedGoogle Scholar
  84. Tatsis, N., Fitzgerald, J.C., Reyes-Sandoval, A., Harris-McCoy, K.C., Hensley, S.E., Zhou, D., Lin, S.W., Bian, A., Xiang, Z.Q., Iparraguirre, A., et al. (2007). Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 110, 1916–1923.CrossRefPubMedGoogle Scholar
  85. Temin, H.M. (1990). Overview of biological effects of addition of DNA molecules to cells. J Med Virol 31, 13–17.CrossRefPubMedGoogle Scholar
  86. Thomson, S.A., Sherritt, M.A., Medveczky, J., Elliott, S.L., Moss, D.J., Fernando, G.J., Brown, L.E., Suhrbier, A. (1998). Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160, 1717–1723.PubMedGoogle Scholar
  87. Thorner, A.R., Lemckert, A.A.C., Goudsmit, J., Lynch, D.M., Ewald, B.A., Denholtz, M., Havenga, M.J.E., Barouch, D.H. (2006). Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity. J Virol 80, 12009–12016.CrossRefPubMedGoogle Scholar
  88. Torres, C.A., Iwasaki, A., Barber, B.H., Robinson, H.L. (1997). Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J Immunol 158, 4529–4532.PubMedGoogle Scholar
  89. Truckenmiller, M.E., Norbury, C.C. (2004). Viral vectors for inducing CD8 T cell responses. Exp Opin Biol Ther 4, 861–868.CrossRefGoogle Scholar
  90. Ulmer, J.B., Wahren, B., Liu, M.A. (2006). Gene-based vaccines: recent technical sand clinical advances. Trends Mol Med 12, 216–222.CrossRefPubMedGoogle Scholar
  91. Wang, B., Norbury, C.C., Greenwood, R., Bennink, J.R., Yewdell, J.W., Frelinger, J.A. (2001). Multiple paths for activation of naive CD8+ T cells: CD4-independent help. J Immunol 167, 1283–1289.PubMedGoogle Scholar
  92. Wohlfart, C. (1988). Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol 62, 2321–2328.PubMedGoogle Scholar
  93. Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., Felgner, P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.CrossRefPubMedGoogle Scholar
  94. Xiang, Z.Q., Yang, Y., Wilson, J.M., Ertl, H.C. (1996). A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 219, 220–227.CrossRefPubMedGoogle Scholar
  95. Xin, K.Q., Urabe, M., Yang, J., Nomiyama, K., Mizukami, H., Hamajima, K., Nomiyama, H., Saito, T., Imai, M., Monahan, J., et al. (2001). A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther 12, 1047–1061.CrossRefPubMedGoogle Scholar
  96. Xin, K.Q., Mizukami, H., Urabe, M., Toda, Y., Shinoda, K., Yoshida, A., Oomura, K., Kojima, Y., Ichino, M., Klinman, D., et al. (2006). Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol 80, 11899–11910.CrossRefPubMedGoogle Scholar
  97. Zaiss, A.K., Muruve, D.A. (2005). Immune responses to adeno-associated virus vectors. Curr Gene Ther 5, 323–331.CrossRefPubMedGoogle Scholar
  98. Zaiss, A.K., Liu, Q., Bowen, G.P., Wong, N.C., Bartlett, J.S., Muruve, D.A. (2002). Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76, 4580–4590.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Molecular Genetics and Microbiology, Gene Therapy CenterUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations