Muscle as a Metabolic Factory for Gene Therapy

  • Cathryn S. Mah
  • Christina A. Pacak
  • Barry J. Byrne
Chapter

Abstract

Since the identification of gene transfer vectors that can efficiently transduce skeletal muscles, the muscle has been targeted in gene therapy strategies to act as a factory of therapeutic gene expression for the treatment of metabolic diseases. The easy accessibility of the skeletal muscle for vector delivery procedures and the ability of the muscle cells to both express and secrete proteins encoded in gene therapy vectors makes the muscle an ideal platform on which to develop gene therapy strategies for the treatment of metabolic diseases of the muscle as well as those diseases that do not involve muscle pathology. We discuss herein current gene therapy strategies focused on using the muscle as a biosynthetic factory. In particular, we will discuss preclinical work for two metabolic myopathies, McArdle and Pompe diseases, and updates on muscle-targeted gene therapy clinical trials for the treatment of other inborn errors of metabolism, alpha-1-antitrypsin deficiency and hemophilia B.

Keywords

Fatigue Hydrolysis Toxicity Carbohydrate Lactate 

References

  1. Angelos, S., Valberg, S.J., Smith, B.P., McQuarrie, P.S., Shanske, S., Tsujino, S., DiMauro, S., Cardinet, G.H., III (1995). Myophosphorylase deficiency associated with rhabdomyolysis and exercise intolerance in 6 related Charolais cattle. Muscle Nerve 18, 736–740.CrossRefPubMedGoogle Scholar
  2. Arruda, V.R., Schuettrumpf, J., Herzog, R.W., Nichols, T.C., Robinson, N., Lotfi, Y., Mingozzi, F., Xiao, W., Couto, L.B., High, K.A. (2004). Safety and efficacy of factor IX gene transfer to skeletal muscle in murine and canine hemophilia B models by adeno-associated viral vector serotype 1. Blood 103, 85–92.CrossRefPubMedGoogle Scholar
  3. Arruda, V.R., Stedman, H.H., Nichols, T.C., Haskins, M.E., Nicholson, M., Herzog, R.W., Couto, L.B., High, K.A. (2005). Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 105, 3458–3464.CrossRefPubMedGoogle Scholar
  4. Baque, S., Newgard, C.B., Gerard, R.D., Guinovart, J.J., Gomez-Foix, A.M. (1994). Adenovirus-mediated delivery into myocytes of muscle glycogen phosphorylase, the enzyme deficient in patients with glycogen-storage disease type V. Biochem J 304, 1009–1014.PubMedGoogle Scholar
  5. Brantly, M.L., Chulay, J.D., Wang, L., Mueller, C., Humphries, M., Spencer, L.T., Rouhani, F., Conlon, T.J., Calcedo, R., Betts, M.R., et al. (2009). Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A 106, 16363–16368.Google Scholar
  6. Brantly, M.L., Spencer, L.T., Humphries, M., Conlon, T.J., Spencer, C.T., Poirier, A., Garlington, W., Baker, D., Song, S., Berns, K.I., Muzyczka, N., Snyder, R.O., Byrne, B.J., Flotte, T.R. (2006). Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 alphal-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 17, 1177–1186.CrossRefPubMedGoogle Scholar
  7. Cresawn, K.O., Fraites, T.J., Wasserfall, C., Atkinson, M., Lewis, M., Porvasnik, S., Liu, C., Mah, C., Byrne, B.J. (2005). Impact of humoral immune response on distribution and efficacy of recombinant adeno-associated virus-derived acid alpha-glucosidase in a model of glycogen storage disease type II. Hum. Gene Ther 16, 68–80.CrossRefPubMedGoogle Scholar
  8. Dimaur, S., Andreu, A.L., Bruno, C., Hadjigeorgiou, G.M. (2002). Myophosphorylase deficiency (glycogenosis type V; McArdle disease). Curr Mol Med 2, 189–196.CrossRefPubMedGoogle Scholar
  9. Ding, E., Hu, H., Hodges, B.L., Migone, F., Serra, D., Xu, F., Chen, Y.T., Amalfitano, A. (2002). Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Mol Ther 5, 436–446.CrossRefPubMedGoogle Scholar
  10. Douillard-Guilloux, G., Raben, N., Takikita, S., Batista, L., Caillaud, C., Richard, E. (2008). Modulation of glycogen synthesis by RNA interference: Towards a new therapeutic approach for glycogenosis type II. Hum Mol Genet 17, 3876–3886.CrossRefPubMedGoogle Scholar
  11. Fraites, T.J., Jr., Schleissing, M.R., Shanely, R.A., Walter, G.A., Cloutier, D.A., Zolotukhin, I., Pauly, D.F., Raben, N., Plotz, P.H., Powers, S.K., Kessler, P.D., Byrne, B.J. (2002). Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 5, 571–578.CrossRefPubMedGoogle Scholar
  12. Gao, G.P., Alvira, M.R., Wang, L., Calcedo, R., Johnston, J., Wilson, J.M. (2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99, 11854–11859.CrossRefPubMedGoogle Scholar
  13. Haller, R.G. (2000). Treatment of McArdle disease. Arch Neurol 57, 923–924.CrossRefPubMedGoogle Scholar
  14. Hauck, B., Xiao, W. (2003). Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol 77, 2768–2774.CrossRefPubMedGoogle Scholar
  15. Hirschhorn, R., Reuser, A.J.J. (2000). Glycogen storage disease II: Acid-alpha glucosidase (acid maltase) deficiency. In: Metabolic Basis of Inherited Disease, C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, eds. (New York: McGraw Hill), pp. 3389–3420.Google Scholar
  16. Hoefsloot, L.H., Willemsen, R., Kroos, M.A., Hoogeveen-Westerveld, M., Hermans, M.M., van der Ploeg, A.T., Oostra, B.A., Reuser, A.J. (1990). Expression and routeing of human lysosomal alpha-glucosidase in transiently transfected mammalian cells. Biochem J 272, 485–492.PubMedGoogle Scholar
  17. Howell, J.M., Walker, K.R., Davies, L., Dunton, E., Everaardt, A., Laing, N., Karpati, G. (2008). Adenovirus and adeno-associated virus-mediated delivery of human myophosphorylase cDNA and LacZ cDNA to muscle in the ovine model of McArdle’s disease: Expression and re-expression of glycogen phosphorylase. Neuromuscul Disord 18, 248–258.CrossRefPubMedGoogle Scholar
  18. Jiang, H., Pierce, G.F., Ozelo, M.C., de Paula, E.V., Vargas, J.A., Smith, P., Sommer, J., Luk, A., Manno, C.S., High, K.A., Arruda, V.R. (2006). Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 14, 452–455.CrossRefPubMedGoogle Scholar
  19. Kay, M.A., Manno, C.S., Ragni, M.V., Larson, P.J., Couto, L.B., McClelland, A., Glader, B., Chew, A.J., Tai, S.J., Herzog, R.W., Arruda, V., Johnson, F., Scallan, C., Skarsgard, E., Flake, A.W., High, K.A. (2000). Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24, 257–261.CrossRefPubMedGoogle Scholar
  20. Kessler, P.D., Podsakoff, G.M., Chen, X., McQuiston, S.A., Colosi, P.C., Matelis, L.A., Kurtzman, G.J., Byrne, B.J. (1996). Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA 93, 14082–14087.CrossRefPubMedGoogle Scholar
  21. Kishnani, P.S., Hwu, W.L., Mandel, H., Nicolino, M., Yong, F., Corzo, D. (2006). A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 148, 671–676.CrossRefPubMedGoogle Scholar
  22. Kishnani, P.S., Corzo, D., Nicolino, M., Byrne, B., Mandel, H., Hwu, W.L., Leslie, N., Levine, J., Spencer, C., McDonald, M., Li, J., Dumontier, J., Halberthal, M., Chien, Y.H., Hopkin, R., Vijayaraghavan, S., Gruskin, D., Bartholomew, D., van der, P.A., Clancy, J.P., Parini, R., Morin, G., Beck, M., De la Gastine, G.S., Jokic, M., Thurberg, B., Richards, S., Bali, D., Davison, M., Worden, M.A., Chen, Y.T., Wraith, J.E. (2007). Recombinant human acid [alpha]-glucosidase: Major clinical benefits in infantile-onset Pompe disease. Neurology 68, 99–109.Google Scholar
  23. Lin, C.Y., Ho, C.H., Hsieh, Y.H., Kikuchi, T. (2002). Adeno-associated virus-mediated transfer of human acid maltase gene results in a transient reduction of glycogen accumulation in muscle of Japanese quail with acid maltase deficiency. Gene Ther 9, 554–563.CrossRefPubMedGoogle Scholar
  24. Mah, C., Cresawn, K.O., Fraites, T.J., Jr., Pacak, C.A., Lewis, M.A., Zolotukhin, I., Byrne, B.J. (2005). Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther 12, 1405–1409.CrossRefPubMedGoogle Scholar
  25. Mah, C., Pacak, C.A., Cresawn, K.O., Deruisseau, L.R., Germain, S., Lewis, M.A., Cloutier, D.A., Fuller, D.D., Byrne, B.J. (2007). Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther 15, 501–507.CrossRefPubMedGoogle Scholar
  26. Manno, C.S., Chew, A.J., Hutchison, S., Larson, P.J., Herzog, R.W., Arruda, V.R., Tai, S.J., Ragni, M.V., Thompson, A., Ozelo, M., Couto, L.B., Leonard, D.G., Johnson, F.A., McClelland, A., Scallan, C., Skarsgard, E., Flake, A.W., Kay, M.A., High, K.A., Glader, B. (2003). AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972.CrossRefPubMedGoogle Scholar
  27. Martin-Touaux, E., Puech, J.P., Chateau, D., Emiliani, C., Kremer, E.J., Raben, N., Tancini, B., Orlacchio, A., Kahn, A., Poenaru, L. (2002). Muscle as a putative producer of acid alpha-glucosidase for glycogenosis type II gene therapy. Hum Mol Genet 11, 1637–1645.CrossRefPubMedGoogle Scholar
  28. McArdle, B. (1951). Myopathy due to a defect in muscle glycogen breakdown. Clin Sci 10, 13–33.Google Scholar
  29. Mueller, C., Flotte, T.R. (2008). Gene therapy for cystic fibrosis. Clin Rev Allergy Immunol 35, 164–178.CrossRefPubMedGoogle Scholar
  30. Nogales-Gadea, G., Arenas, J., Andreu, A.L. (2007). Molecular genetics of McArdle’s disease. Curr Neurol Neurosci Rep 7, 84–92.CrossRefPubMedGoogle Scholar
  31. Pacak, C.A., Mah, C.S., Thattaliyath, B.D., Conlon, T.J., Lewis, M.A., Cloutier, D.E., Zolotukhin, I., Tarantal, A.F., Byrne, B.J. (2006). Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99, e3–e9.CrossRefGoogle Scholar
  32. Pari, G., Crerar, M.M., Nalbantoglu, J., Shoubridge, E., Jani, A., Tsujino, S., Shanske, S., DiMauro, S., Howell, J.M., Karpati, G. (1999). Myophosphorylase gene transfer in McArdle’s disease myoblasts in vitro. Neurology 53, 1352–1354.PubMedGoogle Scholar
  33. Pauly, D.F., Johns, D.C., Matelis, L.A., Lawrence, J.H., Byrne, B.J., Kessler, P.D. (1998). Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther 5, 473–480.CrossRefPubMedGoogle Scholar
  34. Pauly, D.F., Fraites, T.J., Toma, C., Bayes, H.S., Huie, M.L., Hirschhorn, R., Plotz, P.H., Raben, N., Kessler, P.D., Byrne, B.J. (2001). Intercellular transfer of the virally derived precursor form of acid alpha-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy Pompe disease. Hum Gene Ther 12, 527–538.CrossRefPubMedGoogle Scholar
  35. Phoenix, J., Hopkins, P., Bartram, C., Beynon, R.J., Quinlivan, R.C., Edwards, R.H. (1998). Effect of vitamin B6 supplementation in McArdle’s disease: A strategic case study. Neuromuscul Disord 8, 210–212.CrossRefPubMedGoogle Scholar
  36. Raben, N., Lu, N., Nagaraju, K., Rivera, Y., Lee, A., Yan, B., Byrne, B., Meikle, P.J., Umapathysivam, K., Hopwood, J.J., Plotz, P.H. (2001). Conditional tissue-specific expression of the acid alpha-glucosidase (GAA) gene in the GAA knockout mice: Implications for therapy. Hum Mol Genet 10, 2039–2047.CrossRefPubMedGoogle Scholar
  37. Raben, N., Plotz, P., Byrne, B.J. (2002). Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2, 145–166.CrossRefPubMedGoogle Scholar
  38. Raben, N., Fukuda, T., Gilbert, A.L., de, J.D., Thurberg, B.L., Mattaliano, R.J., Meikle, P., Hopwood, J.J., Nagashima, K., Nagaraju, K., Plotz, P.H. (2005). Replacing acid alpha-glucosidase in Pompe disease: Recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers. Mol Ther 11, 48–56.Google Scholar
  39. Rabinowitz, J.E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., Samulski, R.J. (2002). Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76, 791–801.CrossRefPubMedGoogle Scholar
  40. Schoser, B., Hill, V., Raben, N. (2008). Therapeutic approaches in glycogen storage disease type II/Pompe Disease. Neurotherapeutics 5, 569–578.CrossRefPubMedGoogle Scholar
  41. Sun, B., Zhang, H., Franco, L.M., Young, S.P., Schneider, A., Bird, A., Amalfitano, A., Chen, Y.T., Koeberl, D.D. (2005). Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 11, 57–65.CrossRefPubMedGoogle Scholar
  42. Sun, B., Young, S.P., Li, P., Di, C., Brown, T., Salva, M.Z., Li, S., Bird, A., Yan, Z., Auten, R., Hauschka, S.D., Koeberl, D.D. (2008). Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy. Mol Ther 16, 1366–1371.CrossRefPubMedGoogle Scholar
  43. Tan, P., Allen, J.G., Wilton, S.D., Akkari, P.A., Huxtable, C.R., Laing, N.G. (1997). A splice-site mutation causing ovine McArdle’s disease. Neuromuscul Disord 7, 336–342.CrossRefPubMedGoogle Scholar
  44. Tsujino, S., Kinoshita, N., Tashiro, T., Ikeda, K., Ichihara, N., Kikuchi, H., Hagiwara, Y., Mizutani, M., Kikuchi, T., Sakuragawa, N. (1998). Adenovirus-mediated transfer of human acid maltase gene reduces glycogen accumulation in skeletal muscle of Japanese quail with acid maltase deficiency. Hum Gene Ther 9, 1609–1616.CrossRefPubMedGoogle Scholar
  45. Vorgerd, M., Grehl, T., Jager, M., Muller, K., Freitag, G., Patzold, T., Bruns, N., Fabian, K., Tegenthoff, M., Mortier, W., Luttmann, A., Zange, J., Malin, J.P. (2000). Creatine therapy in myophosphorylase deficiency (McArdle disease): A placebo-controlled crossover trial. Arch Neurol 57, 956–963.CrossRefPubMedGoogle Scholar
  46. Wisselaar, H.A., Kroos, M.A., Hermans, M.M., van, B.J., Reuser, A.J. (1993). Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J Biol Chem 268, 2223–2231.Google Scholar
  47. Xiao, W., Chirmule, N., Berta, S.C., McCullough, B., Gao, G., Wilson, J.M. (1999). Gene therapy vectors based on adeno-associated virus type 1. J Virol 73, 3994–4003.PubMedGoogle Scholar
  48. Zaretsky, J.Z., Candotti, F., Boerkoel, C., Adams, E.M., Yewdell, J.W., Blaese, R.M., Plotz, P.H. (1997). Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther 8, 1555–1563.CrossRefPubMedGoogle Scholar
  49. Ziegler, R.J., Bercury, S.D., Fidler, J., Zhao, M.A., Foley, J., Taksir, T.V., Ryan, S., Hodges, B.L., Scheule, R.K., Shihabuddin, L.S., Cheng, S.H. (2008). Ability of adeno-associated virus serotype 8-mediated hepatic expression of acid alpha-glucosidase to correct the biochemical and motor function deficits of presymptomatic and symptomatic Pompe mice. Hum Gene Ther 19, 609–621.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Cathryn S. Mah
  • Christina A. Pacak
  • Barry J. Byrne
    • 1
  1. 1.Department of Pediatrics, Powell Gene Therapy CenterUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations