Delivering Large Therapeutic Genes for Muscle Gene Therapy

  • Yi Lai
  • Yongping Yue
  • Brian Bostick
  • Dongsheng Duan


Gene replacement therapy holds great promise for treating inherited muscle diseases. Unfortunately, the size of the therapeutic genes often exceeds the packaging capacity of commonly used viral vectors. This poses a tremendous challenge for muscle gene therapy. To overcome this hurdle, investigators have been forced to use minimized synthetic genes that are often not fully functional. Novel vector engineering technologies have now brought the hope of ending this size dilemma. The development of gutted vectors with minimal viral sequences allows the accommodation of large therapeutic expression cassettes. Creative single and dual vector strategies have also been developed to expand the packaging capacity of the adeno-associated viral vector, currently the most efficient vehicle for muscle gene transfer. Collectively, these newly developed technologies have greatly expanded the realm of muscle gene therapy.


Transduction Efficiency Gene Expression Cassette Vector Genome Genome Packaging Packaging Capacity 



Research on muscle gene transfer study in the Duan lab is supported by grants from the National Institutes of Health AR-49419, AR-57209 and NS-62934 (DD) and the Muscular Dystrophy Association (DD).


  1. Akkaraju, G.R., Huard, J., Hoffman, E.P., Goins, W.F., Pruchnic, R., Watkins, S.C., Cohen, J.B., and Glorioso, J.C. (1999). Herpes simplex virus vector-mediated dystrophin gene transfer and expression in MDX mouse skeletal muscle. J Gene Med 1, 280–289.CrossRefPubMedGoogle Scholar
  2. Allocca, M., Doria, M., Petrillo, M., Colella, P., Garcia-Hoyos, M., Gibbs, D., Kim, S.R., Maguire, A., Rex, T.S., Di Vicino, U., et al. (2008). Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118, 1955–1964.CrossRefPubMedGoogle Scholar
  3. Bantel-Schaal, U., Delius, H., Schmidt, R., and Zur Hausen, H. (1999). Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol 73, 939–947.PubMedGoogle Scholar
  4. Bilbao, R., Reay, D.P., Wu, E., Zheng, H., Biermann, V., Kochanek, S., and Clemens, P.R. (2005). Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero. Gene Ther 12, 39–47.CrossRefPubMedGoogle Scholar
  5. Bostick, B., Ghosh, A., Yue, Y., Long, C., and Duan, D. (2007). Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration. Gene Ther 14, 1605–1609.CrossRefPubMedGoogle Scholar
  6. Bujold, M., Caron, N., Camiran, G., Mukherjee, S., Allen, P.D., Tremblay, J.P., and Wang, Y. (2002). Autotransplantation in mdx mice of mdx myoblasts genetically corrected by an HSV-1 amplicon vector. Cell Transplant 11, 759–767.PubMedGoogle Scholar
  7. Burton, E.A., Fink, D.J., and Glorioso, J.C. (2002). Gene delivery using herpes simplex virus vectors. DNA Cell Biol 21, 915–936.CrossRefPubMedGoogle Scholar
  8. Chen, H.H., Mack, L.M., Kelly, R., Ontell, M., Kochanek, S., and Clemens, P.R. (1997). Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci U S A 94, 1645–1650.CrossRefPubMedGoogle Scholar
  9. Clemens, P.R., Kochanek, S., Sunada, Y., Chan, S., Chen, H.H., Campbell, K.P., and Caskey, C.T. (1996). In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther 3, 965–972.PubMedGoogle Scholar
  10. DelloRusso, C., Scott, J.M., Hartigan-O’Connor, D., Salvatori, G., Barjot, C., Robinson, A.S., Crawford, R.W., Brooks, S.V., and Chamberlain, J.S. (2002). Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99, 12979–12984.CrossRefPubMedGoogle Scholar
  11. Deol, J.R., Danialou, G., Larochelle, N., Bourget, M., Moon, J.S., Liu, A.B., Gilbert, R., Petrof, B.J., Nalbantoglu, J., and Karpati, G. (2007). Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol Ther 15, 1767–1774.CrossRefPubMedGoogle Scholar
  12. Dong, J.Y., Fan, P.D., and Frizzell, R.A. (1996). Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7, 2101–2112.CrossRefPubMedGoogle Scholar
  13. Dong, B., Nakai, H., and Xiao, W. (2009). Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther in-press.Google Scholar
  14. Duan, D., Sharma, P., Dudus, L., Zhang, Y., Sanlioglu, S., Yan, Z., Yue, Y., Ye, Y., Lester, R., Yang, J., et al. (1999). Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus E4 ORF6 and E2a gene expression. J Virol 73, 161–169.PubMedGoogle Scholar
  15. Duan, D., Yan, Z., and Engelhardt, J.F. (2006). Expanding the capacity of AAV vectors. In Parvoviruses, M.E. Bloom, S.F. Cotmore, R.M. Linden, C.R. Parrish, and J.R. Kerr, eds. (London, New York, Hodder Arnold; Distributed in the U.S.A. by Oxford University Press), pp. 525–532.Google Scholar
  16. Duan, D., Yue, Y., and Engelhardt, J.F. (2001). Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther 4, 383–391.CrossRefPubMedGoogle Scholar
  17. Duan, D., Yue, Y., and Engelhardt, J.F. (2002). Adeno-associated virus. In lung biology in health and disease, gene therapy in lung disease, S.M. Albelda, ed. (New York, NY, Marcel Dekker Inc.), pp. 51–92.Google Scholar
  18. Duan, D., Yue, Y., Yan, Z., and Engelhardt, J.F. (2000). A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 6, 595–598.CrossRefPubMedGoogle Scholar
  19. Dudley, R.W., Lu, Y., Gilbert, R., Matecki, S., Nalbantoglu, J., Petrof, B.J., and Karpati, G. (2004). Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 15, 145–156.CrossRefPubMedGoogle Scholar
  20. Ghosh, A., and Duan, D. (2007). Expending adeno-associated viral vector capacity: a tale of two vectors. Biotechnol Genet Eng Rev 24, 165–177.PubMedGoogle Scholar
  21. Ghosh, A., Yue, Y., and Duan, D. (2006). Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 8, 298–305.CrossRefPubMedGoogle Scholar
  22. Ghosh, A., Yue, Y., Lai, Y., and Duan, D. (2008). A hybrid vector system expands aden-associated viral vector packaging capacity in a transgene independent manner. Mol Ther 16, 124–130.CrossRefPubMedGoogle Scholar
  23. Ghosh, A., Yue, Y., Long, C., Bostick, B., and Duan, D. (2007). Efficient whole-body transduction with trans-splicing adeno-associated viral vectors. Mol Ther 15, 750–755.CrossRefPubMedGoogle Scholar
  24. Gilbert, R., Dudley, R.W., Liu, A.B., Petrof, B.J., Nalbantoglu, J., and Karpati, G. (2003). Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12, 1287–1299.CrossRefPubMedGoogle Scholar
  25. Gilbert, R., Liu, A., Petrof, B., Nalbantoglu, J., and Karpati, G. (2002). Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol Ther 6, 501.CrossRefPubMedGoogle Scholar
  26. Glorioso, J.C., Goins, W.F., Schmidt, M.C., Oligino, T., Krisky, D.M., Marconi, P.C., Cavalcoli, J.D., Ramakrishnan, R., Poliani, P.L., and Fink, D.J. (1997). Engineering herpes simplex virus vectors for human gene therapy. Adv Pharmacol 40, 103–136.CrossRefPubMedGoogle Scholar
  27. Goins, W.F., Wolfe, D., Krisky, D.M., Bai, Q., Burton, E.A., Fink, D.J., and Glorioso, J.C. (2004). Delivery using herpes simplex virus: an overview. Methods Mol Biol 246, 257–299.PubMedGoogle Scholar
  28. Gregorevic, P., Blankinship, M.J., Allen, J.M., Crawford, R.W., Meuse, L., Miller, D.G., Russell, D.W., and Chamberlain, J.S. (2004). Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10, 828–834.CrossRefPubMedGoogle Scholar
  29. Grieger, J.C., and Samulski, R.J. (2005). Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 79, 9933–9944.CrossRefPubMedGoogle Scholar
  30. Haecker, S.E., Stedman, H.H., Balice-Gordon, R.J., Smith, D.B., Greelish, J.P., Mitchell, M.A., Wells, A., Sweeney, H.L., and Wilson, J.M. (1996). In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum Gene Ther 7, 1907–1914.CrossRefPubMedGoogle Scholar
  31. Halbert, C.L., Allen, J.M., and Miller, A.D. (2002). Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat Biotechnol 20, 697–701.CrossRefPubMedGoogle Scholar
  32. Hibbitt, O.C., and Wade-Martins, R. (2006). Delivery of large genomic DNA inserts >100 kb using HSV-1 amplicons. Curr Gene Ther 6, 325–336.CrossRefPubMedGoogle Scholar
  33. Huard, J., Akkaraju, G., Watkins, S.C., Pike-Cavalcoli, M., and Glorioso, J.C. (1997a). LacZ gene transfer to skeletal muscle using a replication-defective herpes simplex virus type 1 mutant vector. Hum Gene Ther 8, 439-452.CrossRefPubMedGoogle Scholar
  34. Huard, J., Feero, W.G., Watkins, S.C., Hoffman, E.P., Rosenblatt, D.J., and Glorioso, J.C. (1996). The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J Virol 70, 8117–8123.PubMedGoogle Scholar
  35. Huard, J., Goins, W.F., and Glorioso, J.C. (1995). Herpes simplex virus type 1 vector mediated gene transfer to muscle. Gene Ther 2, 385–392.PubMedGoogle Scholar
  36. Huard, J., Krisky, D., Oligino, T., Marconi, P., Day, C.S., Watkins, S.C., and Glorioso, J.C. (1997b). Gene transfer to muscle using herpes simplex virus-based vectors. Neuromuscul Disord 7, 299–313.CrossRefPubMedGoogle Scholar
  37. Jiang, Z., Schiedner, G., Gilchrist, S.C., Kochanek, S., and Clemens, P.R. (2004a). CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle. Gene Ther 11, 1453–1461.CrossRefPubMedGoogle Scholar
  38. Jiang, Z., Schiedner, G., van Rooijen, N., Liu, C.C., Kochanek, S., and Clemens, P.R. (2004b). Sustained muscle expression of dystrophin from a high-capacity adenoviral vector with systemic gene transfer of T cell costimulatory blockade. Mol Ther 10, 688–696.CrossRefPubMedGoogle Scholar
  39. Kochanek, S., Clemens, P.R., Mitani, K., Chen, H.H., Chan, S., and Caskey, C.T. (1996). A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A 93, 5731–5736.CrossRefPubMedGoogle Scholar
  40. Lai, Y., Li, D., Yue, Y., and Duan, D. (2008). Design of trans-splicing adeno-associated viral vectors for Duchenne muscular dystrophy gene therapy. Methods Mol Biol 433, 259–275.CrossRefPubMedGoogle Scholar
  41. Lai, Y., Yue, Y., and Duan, D. (2009). Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome ≥ 8.2kb. Mol Ther in-press .Google Scholar
  42. Lai, Y., Yue, Y., Liu, M., and Duan, D. (2006). Synthetic intron improves transduction efficiency of trans-splicing adeno-associated viral vectors. Hum Gene Ther 17, 1036–1042.CrossRefPubMedGoogle Scholar
  43. Lai, Y., Yue, Y., Liu, M., Ghosh, A., Engelhardt, J.F., Chamberlain, J.S., and Duan, D. (2005). Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors. Nat Biotechnol 23, 1435–1439.CrossRefPubMedGoogle Scholar
  44. Link, C.J., Vahanian, N.N., and Wang, S. (2003). Herpes simplex amplicon vectors. Methods Mol Med 76, 61–87.PubMedGoogle Scholar
  45. Matecki, S., Dudley, R.W., Divangahi, M., Gilbert, R., Nalbantoglu, J., Karpati, G., and Petrof, B.J. (2004). Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am J Physiol Lung Cell Mol Physiol 287, L569–L576.CrossRefGoogle Scholar
  46. Mitani, K., Graham, F.L., Caskey, C.T., and Kochanek, S. (1995). Rescue, propagation, and partial purification of a helper virus- dependent adenovirus vector. Proc Natl Acad Sci U S A 92, 3854–3858.CrossRefPubMedGoogle Scholar
  47. Morsy, M.A., Gu, M., Motzel, S., Zhao, J., Lin, J., Su, Q., Allen, H., Franlin, L., Parks, R.J., Graham, F.L., et al. (1998). An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A 95, 7866–7871.CrossRefPubMedGoogle Scholar
  48. Nakai, H., Storm, T.A., and Kay, M.A. (2000). Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors [see comments]. Nat Biotechnol 18, 527–532.CrossRefPubMedGoogle Scholar
  49. Parks, R.J., Chen, L., Anton, M., Sankar, U., Rudnicki, M.A., and Graham, F.L. (1996). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 93, 13565–13570.CrossRefPubMedGoogle Scholar
  50. Reay, D.P., Bilbao, R., Koppanati, B.M., Cai, L., O’Day, T.L., Jiang, Z., Zheng, H., Watchko, J.F., and Clemens, P.R. (2008). Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther 15, 531–536.CrossRefPubMedGoogle Scholar
  51. Rose, J.A., Maizel, J.V., Jr., Inman, J.K., and Shatkin, A.J. (1971). Structural proteins of adenovirus-associated viruses. J Virol 8, 766–770.PubMedGoogle Scholar
  52. Schiedner, G., Morral, N., Parks, R.J., Wu, Y., Koopmans, S.C., Langston, C., Graham, F.L., Beaudet, A.L., and Kochanek, S. (1998). Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18, 180–183.CrossRefPubMedGoogle Scholar
  53. Sun, L., Li, J., and Xiao, X. (2000). Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6, 599–602.CrossRefPubMedGoogle Scholar
  54. Walters, R.W., Agbandje-McKenna, M., Bowman, V.D., Moninger, T.O., Olson, N.H., Seiler, M., Chiorini, J.A., Baker, T.S., and Zabner, J. (2004). Structure of adeno-associated virus serotype 5. J Virol 78, 3361–3371.CrossRefPubMedGoogle Scholar
  55. Wang, Y. (2006). HSV-1 amplicon vectors are an efficient gene transfer system for skeletal muscle cells. Curr Gene Ther 6, 371–381.CrossRefPubMedGoogle Scholar
  56. Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., Chen, C., Li, J., and Xiao, X. (2005). Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23, 321–328.CrossRefPubMedGoogle Scholar
  57. Warrington, K.H., Jr., Gorbatyuk, O.S., Harrison, J.K., Opie, S.R., Zolotukhin, S., and Muzyczka, N. (2004). Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78, 6595–6609.CrossRefPubMedGoogle Scholar
  58. Wobus, C.E., Hugle-Dorr, B., Girod, A., Petersen, G., Hallek, M., and Kleinschmidt, J.A. (2000). Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J Virol 74, 9281–9293.CrossRefPubMedGoogle Scholar
  59. Wu, P., Xiao, W., Conlon, T., Hughes, J., Agbandje-McKenna, M., Ferkol, T., Flotte, T., and Muzyczka, N. (2000). Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74, 8635–8647.CrossRefPubMedGoogle Scholar
  60. Wu, Z., Yang, H., and Colosi, P. (2009). Effect of genome size on AAV packaging. Mol Ther in-press .Google Scholar
  61. Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M.S. (2002). The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99, 10405–10410.CrossRefPubMedGoogle Scholar
  62. Xu, Z., Yue, Y., Lai, Y., Ye, C., Qiu, J., Pintel, D.J., and Duan, D. (2004). Trans-splicing adeno-associated viral vector-mediated gene therapy is limited by the accumulation of spliced mRNA but not by dual vector coinfection efficiency. Hum Gene Ther 15, 896–905.PubMedGoogle Scholar
  63. Yan, Z., Duan, D., and Engelhardt, J.F. (2006). Mechanism of recombinant adeno-associated virus transduction. In Parvoviruses, M.E. Bloom, S.F. Cotmore, R.M. Linden, C.R. Parrish, and J.R. Kerr, eds. (London, England, Hodder Arnold; Distributed in the U.S.A. by Oxford University Press), pp. 511–524.Google Scholar
  64. Yan, Z., Zhang, Y., Duan, D., and Engelhardt, J.F. (2000). Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97, 6716–6721.CrossRefPubMedGoogle Scholar
  65. Yue, Y., Ghosh, A., Long, C., Bostick, B., Smith, B.F., Kornegay, J.N., and Duan, D. (2008). A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16, 1944–1952.CrossRefPubMedGoogle Scholar
  66. Yue, Y., Liu, M., and Duan, D. (2006). C-terminal truncated microdystrophin recruits dystrobrevin and syntrophin to the dystrophin-associated glycoprotein complex and reduces muscular dystrophy in symptomatic utrophin/dystrophin double knock-out mice. Mol Ther 14, 79–87.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yi Lai
  • Yongping Yue
  • Brian Bostick
  • Dongsheng Duan
    • 1
  1. 1.Department of Molecular Microbiology and ImmunologyOne Hospital DrColumbiaUSA

Personalised recommendations