MicroRNA Profiling and Its Application in Drug Discovery in Pancreatic Cancer

  • Aarati R. Ranade
  • Glen J. Weiss


MicroRNAs (miRNAs) are single-stranded small RNA molecules of 21–23 nucleotides in length, involved in regulation of gene expression. An emerging number of studies show that miRNAs play a vital role in important signaling pathways in human oncogenesis. miRNAs can be utilized as potential biomarkers for cancer diagnosis and also as candidates in cancer treatment drug development. Pancreatic cancer is a lethal disease and is the fourth leading cause of cancer-related deaths in the United States. One key factor that can make an impact is earlier diagnosis of the disease, when surgery could offer patients a chance of cure. Use of miRNAs for early detection and drug development offers a unique opportunity. Identification and assessment of miRNA functionality that are differentially expressed in pancreatic cancer originates from methods for miRNA profiling such as miRNA microarray, in situ hybridization, and various computational algorithms applied for data analysis. This chapter discusses the various profiling methods applied to the identification of differentially expressed miRNAs in pancreatic cancer, which can applied towards drug development for pancreatic cancer.


Pancreatic Cancer miRNA Expression Pancreatic Adenocarcinoma Pancreatic Cancer Patient miRNA Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bai G, Ambalavanar R, Wei D et al (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15CrossRefPubMedGoogle Scholar
  2. Bandres E, Agirre X, Ramirez N et al (2007) MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol 26:273–282CrossRefPubMedGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefPubMedGoogle Scholar
  4. Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908CrossRefPubMedGoogle Scholar
  5. Burris HA 3rd, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413PubMedGoogle Scholar
  6. Calin GA, Liu CG, Sevignani C et al (2004a) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760CrossRefGoogle Scholar
  7. Calin GA, Sevignani C, Dumitru CD et al (2004b) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004CrossRefGoogle Scholar
  8. Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60CrossRefPubMedGoogle Scholar
  9. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103:3687–3692CrossRefPubMedGoogle Scholar
  10. Dalmay T, Edwards DR (2006) MicroRNAs and the hallmarks of cancer. Oncogene 25:6170–6175CrossRefPubMedGoogle Scholar
  11. Dillhoff M, Liu J, Frankel W et al (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12:2171–2176CrossRefPubMedGoogle Scholar
  12. Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632CrossRefPubMedGoogle Scholar
  13. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefPubMedGoogle Scholar
  14. Fabbri M, Croce CM, Calin GA (2008) MicroRNAs. Cancer J 14:1–6CrossRefPubMedGoogle Scholar
  15. Gallegos Ruiz MI, Floor K, Rijmen F et al (2007) EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol 29:257–264Google Scholar
  16. Gold DV, Modrak DE, Ying Z et al (2006) New MUC1 serum immunoassay differentiates pancreatic cancer from pancreatitis. J Clin Oncol 24:252–258CrossRefPubMedGoogle Scholar
  17. Grote T, Logsdon CD (2007) Progress on molecular markers of pancreatic cancer. Curr Opin Gastroenterol 23:508–514CrossRefPubMedGoogle Scholar
  18. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647CrossRefPubMedGoogle Scholar
  19. Kalikaki A, Koutsopoulos A, Trypaki M et al (2008) Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer 99:923–929CrossRefPubMedGoogle Scholar
  20. Krichevsky AM, King KS, Donahue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281CrossRefPubMedGoogle Scholar
  21. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  22. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054CrossRefPubMedGoogle Scholar
  23. Li D, Xie K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057CrossRefPubMedGoogle Scholar
  24. Linardou H, Dahabreh IJ, Kanaloupiti D et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9(10):962–972CrossRefPubMedGoogle Scholar
  25. Liu F, Jiang B, Gong SJ et al (2007) [Mutational analysis of EGFR and K-RAS in Chinese patients with non-small cell lung cancer]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24:31–34PubMedGoogle Scholar
  26. Liu CG, Calin GA, Volinia S et al (2008a) MicroRNA expression profiling using microarrays. Nat Protoc 3:563–578CrossRefGoogle Scholar
  27. Liu CG, Spizzo R, Calin GA et al (2008b) Expression profiling of microRNA using oligo DNA arrays. Methods 44:22–30CrossRefGoogle Scholar
  28. Lowery AJ, Miller N, McNeill RE et al (2008) MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res 14:360–365CrossRefPubMedGoogle Scholar
  29. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefPubMedGoogle Scholar
  30. McManus MT (2003) MicroRNAs and cancer. Semin Cancer Biol 13:253–258CrossRefPubMedGoogle Scholar
  31. Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129CrossRefPubMedGoogle Scholar
  32. Michael MZ, O'Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891PubMedGoogle Scholar
  33. Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966CrossRefPubMedGoogle Scholar
  34. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161CrossRefPubMedGoogle Scholar
  35. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500CrossRefPubMedGoogle Scholar
  36. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230CrossRefPubMedGoogle Scholar
  37. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefPubMedGoogle Scholar
  38. Schmittgen TD, Lee EJ, Jiang J et al (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44:31–38CrossRefPubMedGoogle Scholar
  39. Schutte M, Hruban RH, Geradts J et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57:3126–3130PubMedGoogle Scholar
  40. Simeone DM, Ji B, Banerjee M et al (2007) CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34:436–443CrossRefPubMedGoogle Scholar
  41. Soung YH, Lee JW, Kim SY et al (2005) Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch 446:483–488CrossRefPubMedGoogle Scholar
  42. Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefPubMedGoogle Scholar
  43. Tang F, Hajkova P, Barton SC et al (2006) 220-plex microRNA expression profile of a single cell. Nat Protoc 1:1154–1159CrossRefPubMedGoogle Scholar
  44. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596CrossRefPubMedGoogle Scholar
  45. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.TGen Clinical Research ServicesTranslational Genomics Research Institute (TGen)PhoenixUSA

Personalised recommendations