Gene Expression Arrays in Pancreatic Cancer Drug Discovery Research

  • Charles Gawad


The development of gene expression arrays to simultaneously quantify the expression of thousands of genes has been a leap forward in our attempt to understand the biology of pancreatic cancer in a variety of contexts. When combined with supervised and unsupervised interrogations using complex mathematical algorithms, researchers have been able to unveil specific molecular features of subsets of tumors. This has subsequently led to a greater understanding of the heterogeneity of pancreatic cancer genesis, metastasis, and resistance to drug therapy. Further, these studies have provided lists of proteins that could potentially be targeted to modify these phenomena, as well as serve as biomarkers during the drug discovery process and translation to the clinic. This chapter focuses on approaches to the application of gene expression arrays that have been able to address these questions, with special consideration of how they can and are being used to uncover and develop new therapies for pancreatic cancer.


Pancreatic Cancer Pancreatic Cancer Cell Gene Expression Signature Pancreatic Cancer Patient Oligonucleotide Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Adorjan P, Distler J, Lipscher E et al (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21Google Scholar
  3. Akada M, Crnogorac-Jurcevic T, Lattimore S et al (2005) Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clin Cancer Res 11:3094–3101PubMedCrossRefGoogle Scholar
  4. Alizadeh A, Eisen M, Davis RE et al (1999) The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 64:71–78PubMedCrossRefGoogle Scholar
  5. Allander SV, Nupponen NN, Ringner M et al (2001) Gastrointestinal stromal tumors with KIT mutations exhibit a remarkably homogeneous gene expression profile. Cancer Res 61:8624–8628PubMedGoogle Scholar
  6. Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750PubMedCrossRefGoogle Scholar
  7. Amler LC, Agus DB, LeDuc C et al (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60:6134–6141PubMedGoogle Scholar
  8. Antipova AA, Stockwell BR, Golub TR (2008) Gene expression-based screening for inhibitors of PDGFR signaling. Genome Biol 9:R47Google Scholar
  9. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCrossRefGoogle Scholar
  10. Bai J, Sata N, Nagai H (2007) Gene expression analysis for predicting gemcitabine sensitivity in pancreatic cancer patients. HPB (Oxford) 9:150–155Google Scholar
  11. Barrett MT, Scheffer A, Ben-Dor A et al (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101:17765–17770PubMedCrossRefGoogle Scholar
  12. Bertucci F, Finetti P, Rougemont J et al (2005) Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 65:2170–2178PubMedCrossRefGoogle Scholar
  13. Binkley CE, Zhang L, Greenson JK et al (2004) The molecular basis of pancreatic fibrosis: common stromal gene expression in chronic pancreatitis and pancreatic adenocarcinoma. Pancreas 29:254–263PubMedCrossRefGoogle Scholar
  14. Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540PubMedCrossRefGoogle Scholar
  15. Bloom G, Yang IV, Boulware D et al (2004) Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol 164:9–16PubMedGoogle Scholar
  16. Bockhorn M, Tsuzuki Y, Xu L et al (2003) Differential vascular and transcriptional responses to anti-vascular endothelial growth factor antibody in orthotopic human pancreatic cancer xenografts. Clin Cancer Res 9:4221–4226PubMedGoogle Scholar
  17. Brown MP, Grundy WN, Lin D et al (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97:262–267PubMedCrossRefGoogle Scholar
  18. Buchholz M, Kestler HA, Bauer A et al (2005) Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 11:8048–8054PubMedCrossRefGoogle Scholar
  19. Bueno-de-Mesquita JM, van Harten WH, Retel VP et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087PubMedCrossRefGoogle Scholar
  20. Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl:490–495PubMedCrossRefGoogle Scholar
  21. Cordes N, Frick S, Brunner TB et al (2007) Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 26:6851–6862PubMedCrossRefGoogle Scholar
  22. Craig DW, Pearson JV, Szelinger S et al (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nat Methods 5:887–893PubMedCrossRefGoogle Scholar
  23. Crnogorac-Jurcevic T, Efthimiou E, Capelli P et al (2001) Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene 20:7437–7446PubMedCrossRefGoogle Scholar
  24. Dave SS, Wright G, Tan B et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159–2169PubMedCrossRefGoogle Scholar
  25. DeRisi J, Penland L, Brown PO et al (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457–460PubMedCrossRefGoogle Scholar
  26. Dykxhoorn DM, Lieberman J (2006) Knocking down disease with siRNAs. Cell 126:231–235PubMedCrossRefGoogle Scholar
  27. Ekins S, Nikolsky Y, Bugrim A et al (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350PubMedGoogle Scholar
  28. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498PubMedCrossRefGoogle Scholar
  29. Feldmann G, Habbe N, Dhara S et al (2008) Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 57:1420–1430PubMedCrossRefGoogle Scholar
  30. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  31. Gandhi TK, Zhong J, Mathivanan S et al (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293PubMedCrossRefGoogle Scholar
  32. Giroux V, Malicet C, Barthet M et al (2006) p8 is a new target of gemcitabine in pancreatic cancer cells. Clin Cancer Res 12:235–241PubMedCrossRefGoogle Scholar
  33. Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedCrossRefGoogle Scholar
  34. Gray PJ Jr, Bearss DJ, Han H et al (2004) Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Mol Cancer Ther 3:641–646PubMedCrossRefGoogle Scholar
  35. Grutzmann R, Boriss H, Ammerpohl O et al (2005) Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 24:5079–5088PubMedCrossRefGoogle Scholar
  36. Grutzmann R, Foerder M, Alldinger I et al (2003) Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443:508–517PubMedCrossRefGoogle Scholar
  37. Gunderson KL, Steemers FJ, Lee G et al (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554PubMedCrossRefGoogle Scholar
  38. Hahn CK, Ross KN, Warrington IM et al (2008) Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci USA 105:9751–9756PubMedCrossRefGoogle Scholar
  39. Hahn SA, Greenhalf B, Ellis I et al (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95:214–221PubMedCrossRefGoogle Scholar
  40. Han H, Bearss DJ, Browne LW et al (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896PubMedGoogle Scholar
  41. Hartmann LC, Lu KH, Linette GP et al (2005) Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin Cancer Res 11:2149–2155PubMedCrossRefGoogle Scholar
  42. Hedenfalk I, Duggan D, Chen Y et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548PubMedCrossRefGoogle Scholar
  43. Hedenfalk I, Ringner M, Ben-Dor A et al (2003) Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proc Natl Acad Sci USA 100:2532–2537PubMedCrossRefGoogle Scholar
  44. Heighway J, Knapp T, Boyce L et al (2002) Expression profiling of primary non-small cell lung cancer for target identification. Oncogene 21:7749–7763PubMedCrossRefGoogle Scholar
  45. Hess V, Glimelius B, Grawe P et al (2008) CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol 9:132–138PubMedCrossRefGoogle Scholar
  46. Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330PubMedCrossRefGoogle Scholar
  47. Higgins JP, Shinghal R, Gill H et al (2003) Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. Am J Pathol 162:925–932PubMedGoogle Scholar
  48. Hofmann WK, de Vos S, Elashoff D et al (2002) Relation between resistance of Philadelphia-chromosome-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 359:481–486PubMedCrossRefGoogle Scholar
  49. Holloway SE, Beck AW, Girard L et al (2005) Increased expression of Cyr61 (CCN1) identified in peritoneal metastases from human pancreatic cancer. J Am Coll Surg 200:371–377PubMedCrossRefGoogle Scholar
  50. Huusko P, Ponciano-Jackson D, Wolf M et al (2004) Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer. Nat Genet 36:979–983PubMedCrossRefGoogle Scholar
  51. Iacobuzio-Donahue CA, Ashfaq R, Maitra A et al (2003a) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63:8614–8622Google Scholar
  52. Iacobuzio-Donahue CA, Maitra A, Olsen M et al (2003b) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162Google Scholar
  53. Iiizumi M, Hosokawa M, Takehara A et al (2006) EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth. Cancer Sci 97:1211–1216PubMedCrossRefGoogle Scholar
  54. Irizarry RA, Warren D, Spencer F et al (2005) Multiple-laboratory comparison of microarray platforms. Nat Methods 2:345–350PubMedCrossRefGoogle Scholar
  55. Janoueix-Lerosey I, Novikov E, Monteiro M et al (2004) Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene 23:5912–5922PubMedCrossRefGoogle Scholar
  56. Johnston M, Andrews S, Brinkman R et al (1994) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science 265:2077–2082PubMedCrossRefGoogle Scholar
  57. Jones S, Zhang X, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806PubMedCrossRefGoogle Scholar
  58. Kayed H, Kleeff J, Kolb A et al (2006) FXYD3 is overexpressed in pancreatic ductal adenocarcinoma and influences pancreatic cancer cell growth. Int J Cancer 118:43–54PubMedCrossRefGoogle Scholar
  59. Khan J, Bittner ML, Saal LH et al (1999) cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96:13264–13269PubMedCrossRefGoogle Scholar
  60. Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679PubMedCrossRefGoogle Scholar
  61. Kim JB, Zaehres H, Wu G et al (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650PubMedCrossRefGoogle Scholar
  62. Koide N, Yamada T, Shibata R et al (2006) Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 12:2419–2426PubMedCrossRefGoogle Scholar
  63. Kondo Y, Shen L, Yan PS et al (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101:7398–7403PubMedCrossRefGoogle Scholar
  64. Kudoh K, Ramanna M, Ravatn R et al (2000) Monitoring the expression profiles of doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microarray. Cancer Res 60:4161–4166PubMedGoogle Scholar
  65. Lacal JC (2007) How molecular biology can improve clinical management: the MammaPrint experience. Clin Transl Oncol 9:203PubMedCrossRefGoogle Scholar
  66. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  67. Laurell H, Bouisson M, Berthelemy P et al (2006) Identification of biomarkers of human pancreatic adenocarcinomas by expression profiling and validation with gene expression analysis in endoscopic ultrasound-guided fine needle aspiration samples. World J Gastroenterol 12:3344–3351PubMedGoogle Scholar
  68. Li R, Wang H, Bekele BN et al (2006) Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25:2628–2635PubMedCrossRefGoogle Scholar
  69. Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657PubMedGoogle Scholar
  70. Maehara S, Tanaka S, Shimada M et al (2004) Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int J Cancer 112:184–189PubMedCrossRefGoogle Scholar
  71. Mahlamaki EH, Kauraniemi P, Monni O et al (2004) High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia 6:432–439PubMedCrossRefGoogle Scholar
  72. Maxwell PJ, Longley DB, Latif T et al (2003) Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res 63:4602–4606PubMedGoogle Scholar
  73. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRefGoogle Scholar
  74. Moch H, Schraml P, Bubendorf L et al (1999) High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma. Am J Pathol 154:981–986PubMedGoogle Scholar
  75. Moniaux N, Chakraborty S, Yalniz M et al (2008) Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 98:1540–1547PubMedCrossRefGoogle Scholar
  76. Nakahira S, Nakamori S, Tsujie M et al (2007) Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 120:1355–1363PubMedCrossRefGoogle Scholar
  77. Nakai Y, Otsuka M, Hoshida Y et al (2005) Identifying genes with differential expression in gemcitabine-resistant pancreatic cancer cells using comprehensive transcriptome analysis. Oncol Rep 14:1263–1267PubMedGoogle Scholar
  78. Nakamura T, Furukawa Y, Nakagawa H et al (2004) Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23:2385–2400PubMedCrossRefGoogle Scholar
  79. Nakamura T, Fidler IJ, Coombes KR (2007a) Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139–148CrossRefGoogle Scholar
  80. Nakamura T, Kuwai T, Kitadai Y et al (2007b) Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res 67:7597–7604CrossRefGoogle Scholar
  81. Okada T, Masuda N, Fukai Y et al (2006) Immunohistochemical expression of 14-3-3 sigma protein in intraductal papillary-mucinous tumor and invasive ductal carcinoma of the pancreas. Anticancer Res 26:3105–3110PubMedGoogle Scholar
  82. Peck D, Crawford ED, Ross KN et al (2006) A method for high-throughput gene expression signature analysis. Genome Biol 7:R61Google Scholar
  83. Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442PubMedCrossRefGoogle Scholar
  84. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32 Suppl:496–501PubMedCrossRefGoogle Scholar
  85. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354:2463–2472PubMedCrossRefGoogle Scholar
  86. Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRefGoogle Scholar
  87. Ringner M, Peterson C (2003) Microarray-based cancer diagnosis with artificial neural networks. Biotechniques Suppl:30–35Google Scholar
  88. Satoh K, Hamada S, Kimura K et al (2008) Up-regulation of MSX2 enhances the malignant phenotype and is associated with twist 1 expression in human pancreatic cancer cells. Am J Pathol 172:926–939PubMedCrossRefGoogle Scholar
  89. Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  90. Schulze A, Downward J (2001) Navigating gene expression using microarrays-a technology review. Nat Cell Biol 3:E190–195PubMedCrossRefGoogle Scholar
  91. Shannon W, Culverhouse R, Duncan J (2003) Analyzing microarray data using cluster analysis. Pharmacogenomics 4:41–52PubMedCrossRefGoogle Scholar
  92. Shedden K, Taylor JM, Enkemann SA et al (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14:822–827PubMedCrossRefGoogle Scholar
  93. Singh D, Febbo PG, Ross K et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209PubMedCrossRefGoogle Scholar
  94. Siveke JT, Einwachter H, Sipos B et al (2007) Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell 12:266–279PubMedCrossRefGoogle Scholar
  95. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRefGoogle Scholar
  96. Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398PubMedCrossRefGoogle Scholar
  97. Stegmaier K, Ross KN, Colavito SA et al (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 36:257–263PubMedCrossRefGoogle Scholar
  98. Stegmaier K, Corsello SM, Ross KN et al (2005) Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 106:2841–2848PubMedCrossRefGoogle Scholar
  99. Stegmaier K, Wong JS, Ross KN et al (2007) Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med 4:e122Google Scholar
  100. Takehara A, Hosokawa M, Eguchi H et al (2007) Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res 67:9704–9712PubMedCrossRefGoogle Scholar
  101. Taniuchi K, Nakagawa H, Hosokawa M et al (2005) Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 65:3092–3099PubMedGoogle Scholar
  102. Terris B, Blaveri E, Crnogorac-Jurcevic T et al (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160:1745–1754PubMedGoogle Scholar
  103. van de Vijver MJ, He YD, van't Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009CrossRefGoogle Scholar
  104. van Delft FW, Bellotti T, Luo Z et al (2005) Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. Br J Haematol 130:26–35PubMedCrossRefGoogle Scholar
  105. Vimalachandran D, Greenhalf W, Thompson C et al (2005) High nuclear S100A6 (Calcyclin) is significantly associated with poor survival in pancreatic cancer patients. Cancer Res 65:3218–3225PubMedGoogle Scholar
  106. Wain HM, Lush MJ, Ducluzeau F et al (2004) Genew: the Human Gene Nomenclature Database, 2004 updates. Nucleic Acids Res 32:D255–D257PubMedCrossRefGoogle Scholar
  107. Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar
  108. Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288PubMedCrossRefGoogle Scholar
  109. Wu CH, Sahoo D, Arvanitis C et al (2008) Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet 4:e1000090Google Scholar
  110. Xu J, Stolk JA, Zhang X et al (2000) Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Res 60:1677–1682PubMedGoogle Scholar
  111. Xu Y, Selaru FM, Yin J et al (2002) Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res 62:3493–3497PubMedGoogle Scholar
  112. Yang SX, Simon RM, Tan AR et al (2005) Gene expression patterns and profile changes pre- and post-erlotinib treatment in patients with metastatic breast cancer. Clin Cancer Res 11:6226–6232PubMedCrossRefGoogle Scholar
  113. Yuen T, Wurmbach E, Pfeffer RL et al (2002) Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res 30:e48Google Scholar
  114. Zembutsu H, Ohnishi Y, Tsunoda T et al (2002) Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 62:518–527PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PediatricsUCLA Medical CenterLos AngelesUSA

Personalised recommendations