Fluorescent Metastatic Mouse Models of Pancreatic Cancer for Drug Discovery

  • Michael Bouvet
  • Robert M. Hoffman


Here we describe our cumulative experience with the development and preclinical application of imageable, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of green fluorescent protein (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time quantitative imaging of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor–host interaction between the pancreatic cancer cells and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate metastatic human pancreatic cancer and novel therapeutic strategies directed against it.


Pancreatic Cancer Green Fluorescent Protein Nude Mouse Human Pancreatic Cancer Human Pancreatic Cancer Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amoh Y, Li L, Tsuji K et al (2006a) Dual-color imaging of nascent blood vessels vascularizing pancreatic cancer in an orthotopic model demonstrates antiangiogenesis efficacy of gemcitabine. J Surg Res 132:164–169CrossRefGoogle Scholar
  2. Amoh Y, Nagakura C, Maitra A et al (2006b) Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Res 26:3237–3242Google Scholar
  3. An Z, Wang X, Kubota T et al (1996) A clinical nude mouse metastatic model for highly malignant human pancreatic cancer. Anticancer Res 16:627–631PubMedGoogle Scholar
  4. Astoul P, Colt HG, Wang X et al (1994) A “patient-like” nude mouse model of parietal pleural human lung adenocarcinoma. Anticancer Res 14:85–91PubMedGoogle Scholar
  5. Bouvet M, Gamagami RA, Gilpin EA et al (2000a) Factors influencing survival after resection for periampullary neoplasms. Am J Surg 180:13–17CrossRefGoogle Scholar
  6. Bouvet M, Yang M, Nardin S et al (2000b) Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis 18:213–218CrossRefGoogle Scholar
  7. Bouvet M, Binmoeller KF, Moossa AR (2001) Diagnosis of adenocarcinoma of the pancreas. In: Cameron JL (ed) American cancer society atlas of clinical oncology: pancreatic cancer, Hamilton, Ontario, Canada, BC Decker, pp 67–86Google Scholar
  8. Bouvet M, Wang J, Nardin SR et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62:1534–1540PubMedGoogle Scholar
  9. Bouvet M, Spernyak J, Katz MH et al (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65:9829–9833CrossRefPubMedGoogle Scholar
  10. Bruns CJ, Harbison MT, Kuniyasu H et al (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1:50–62CrossRefPubMedGoogle Scholar
  11. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  12. Chambers AF, MacDonald IC, Schmidt EE et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301CrossRefPubMedGoogle Scholar
  13. Cheng L, Fu J, Tsukamoto A et al (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609CrossRefPubMedGoogle Scholar
  14. Chishima T, Miyagi Y, Li L et al (1997a) Use of histoculture and green fluorescent protein to visualize tumor cell host interaction [letter]. In Vitro Cell Dev Biol Anim 33:745–747CrossRefGoogle Scholar
  15. Chishima T, Miyagi Y, Wang X et al (1997b) Metastatic patterns of lung cancer visualized live and in process by green fluorescence protein expression. Clin Exp Metastasis 15:547–552CrossRefGoogle Scholar
  16. Chishima T, Miyagi Y, Wang X et al (1997c) Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17:2377–2384Google Scholar
  17. Chishima T, Miyagi Y, Wang X et al (1997d) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047Google Scholar
  18. Chishima T, Yang M, Miyagi Y et al (1997e) Governing step of metastasis visualized in vitro. Proc Natl Acad Sci USA 94:11573–11576CrossRefGoogle Scholar
  19. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1):33–38CrossRefPubMedGoogle Scholar
  20. Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology (NY) 13:151–154CrossRefGoogle Scholar
  21. Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50:6130–6138PubMedGoogle Scholar
  22. Fu X, Guadagni F, Hoffman RM (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci USA 89:5645–5649CrossRefPubMedGoogle Scholar
  23. Fukumura D, Yuan F, Monsky WL et al (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688PubMedGoogle Scholar
  24. Furukawa T, Kubota T, Watanabe M et al (1993) A novel patient-like treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 53:3070–3072PubMedGoogle Scholar
  25. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664CrossRefPubMedGoogle Scholar
  26. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359CrossRefPubMedGoogle Scholar
  27. Hoffman RM (2005) The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 5:796–806CrossRefPubMedGoogle Scholar
  28. Hoffman RM, Yang M (2006) Whole-body imaging with fluorescent proteins. Nat Protoc 1:1429–1438CrossRefPubMedGoogle Scholar
  29. Katz MH, Bouvet M, Takimoto S et al (2003a) Selective antimetastatic activity of cytosine analog CS-682 in a red fluorescent protein orthotopic model of pancreatic cancer. Cancer Res 63:5521–5525Google Scholar
  30. Katz MH, Spivack DE, Takimoto S et al (2003b) Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Ann Surg Oncol 10:762–772CrossRefGoogle Scholar
  31. Katz MH, Takimoto S, Spivack D et al (2003c) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160CrossRefGoogle Scholar
  32. Katz MH, Bouvet M, Al-Refaie W et al (2004a) Non-pancreatic periampullary adenocarcinomas: an explanation for favorable prognosis. Hepatogastroenterology 51:842–846Google Scholar
  33. Katz MH, Bouvet M, Takimoto S et al (2004b) Survival efficacy of adjuvant cytosine-analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer. Cancer Res 64:1828–1833CrossRefGoogle Scholar
  34. Katz MH, Takimoto S, Spivack D et al (2004c) An imageable highly metastatic orthotopic red fluorescent protein model of pancreatic cancer. Clin Exp Metastasis 21:7–12CrossRefGoogle Scholar
  35. Katz MH, Savides TJ, Moossa AR et al (2005) An evidence-based approach to the diagnosis and staging of pancreatic cancer. Pancreatology 5:576–590CrossRefPubMedGoogle Scholar
  36. Kiguchi K, Kubota T, Aoki D et al (1998) A patient-like orthotopic implantation nude mouse model of highly metastatic human ovarian cancer. Clin Exp Metastasis 16:751–756CrossRefPubMedGoogle Scholar
  37. Kyriazis AP, DiPersio L, Michael GJ et al (1978) Growth patterns and metastatic behavior of human tumors growing in athymic mice. Cancer Res 38:3186–3190PubMedGoogle Scholar
  38. Lee NC, Bouvet M, Nardin S et al (2000) Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model. Clin Exp Metastasis 18:379–384CrossRefPubMedGoogle Scholar
  39. Lin WC, Pretlow TP, Pretlow TG, 2nd et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817PubMedGoogle Scholar
  40. Marincola FM, Drucker BJ, Siao DY et al (1989) The nude mouse as a model for the study of human pancreatic cancer. J Surg Res 47:520–529CrossRefPubMedGoogle Scholar
  41. Moossa AR, Bouvet M, Gamagami R (2002) The pancreas. In: Cuschieri A, Steele RJC, Moossa AR (ed) Essential surgical practice, vol 2. Arnold Publishing, London, pp 477–525Google Scholar
  42. Morikawa K, Walker SM, Nakajima M et al (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871PubMedGoogle Scholar
  43. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green–fluorescent protein. Gene 111:229–233CrossRefPubMedGoogle Scholar
  44. Saito N, Zhao M, Li L et al (2002) High efficiency genetic modification of hair follicles and growing hair shafts. Proc Natl Acad Sci USA 99:13120–13124CrossRefPubMedGoogle Scholar
  45. Sweeney TJ, Mailander V, Tucker AA et al (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049CrossRefPubMedGoogle Scholar
  46. Tan MH, Chu TM (1985) Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biol 6:89–98PubMedGoogle Scholar
  47. Tomikawa M, Kubota T, Matsuzaki SW et al (1997) Mitomycin C and cisplatin increase survival in a human pancreatic cancer metastatic model. Anticancer Res 17:3623–3625PubMedGoogle Scholar
  48. Tsuji K, Yang M, Jiang P et al (2006) Common bile duct injection as a novel method for establishing red fluorescent protein (RFP)-expressing human pancreatic cancer in nude mice. JOP 7:193–199PubMedGoogle Scholar
  49. US Patents 5, 284 and 5,569,812 Reissue RE:39,337Google Scholar
  50. Vezeridis MP, Doremus CM, Tibbetts LM et al (1989) Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J Surg Oncol 40:261–265CrossRefPubMedGoogle Scholar
  51. Weissleder R, Tung CH, Mahmood U et al (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375–378CrossRefPubMedGoogle Scholar
  52. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251CrossRefPubMedGoogle Scholar
  53. Yang M, Hasegawa S, Jiang P et al (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221PubMedGoogle Scholar
  54. Yang M, Jiang P, An Z et al (1999a) Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 5:3549–3559Google Scholar
  55. Yang M, Jiang P, Sun FX et al (1999b) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786Google Scholar
  56. Yang M, Baranov E, Jiang P et al (2000a) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211CrossRefGoogle Scholar
  57. Yang M, Baranov E, Moossa AR et al (2000b) Visualizing gene expression by whole-body fluorescence imaging [In Process Citation]. Proc Natl Acad Sci USA 97:12278–12282CrossRefGoogle Scholar
  58. Yang M, Baranov E, Li XM et al (2001) Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 98:2616–2621CrossRefPubMedGoogle Scholar
  59. Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829CrossRefPubMedGoogle Scholar
  60. Yang M, Li L, Jiang P et al (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100:14259–14262CrossRefPubMedGoogle Scholar
  61. Yang M, Jiang P, Hoffman RM (2007) Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res 67:5195–5200CrossRefPubMedGoogle Scholar
  62. Zolotukhin S, Potter M, Hauswirth WW et al (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of California San Diego, Moores Cancer CenterLa JollaUSA

Personalised recommendations