Drug Evaluations in Pancreatic Cancer Culture Systems

  • Bhargava Mullapudi
  • Yongzeng Ding
  • Xianzhong Ding
  • Paul Grippo


Pancreatic cancer has proven to be one of the most difficult diseases to detect, diagnose, and treat due to both the location of the pancreas in the abdomen and the lack of overt symptoms before cancer dissemination. Thus, it is critical to have a variety of modeling systems that can be employed to evaluate drug responses/mechanisms while providing a relatively simple format for drug screening. Cell culture serves this purpose. In this context, it is necessary to review the available pancreatic cancer cell lines, culture techniques, predominant signaling pathways, and types of analyses that can be utilized to assess the effectiveness of drugs on pancreatic cancer cells, including aspects of pharmocotherapeutic strategies for the development of novel methodologies. Special consideration will be given to different signal transduction pathways like MAPK, JAK/STAT, PI3K/AKT, RTKs, VEGF, and NF-κB, which are involved in various aspects of pancreatic cancer development and progression, complete with a repertoire of chemical inhibition at several levels within a cascade. Ultimately, abrogation of these cell signals can be detected through measurable variables at the cellular level, including apoptosis, proliferation, altered cell phenotype, the ability to invade and/or metastasize, and changes in cell cycle parameters. Evaluation of drugs at this level can set the stage for future strategies as well as exploration of novel compounds that inhibit other vital cancer signaling pathways.


Pancreatic Cancer Cancer Stem Cell Pancreatic Cancer Cell Pancreatic Cancer Cell Line Vascular Endothelial Cell Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alessi DR, Andjelkovic M et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551PubMedGoogle Scholar
  2. Anderson IC, Mari SE et al (2000) The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res 60(2):269–272PubMedGoogle Scholar
  3. Armstrong JW (1999) A review of high-throughput screening approaches for drug discovery. Am Biotechnol Lab 17(5):26–28Google Scholar
  4. Baker CH, Solorzano CC et al (2002) Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res 62(7):1996–2003PubMedGoogle Scholar
  5. Barber MD, Fearon KC et al (1999) Relationship of serum levels of interleukin-6, soluble interleukin-6 receptor and tumour necrosis factor receptors to the acute-phase protein response in advanced pancreatic cancer. Clin Sci (Lond) 96(1):83–87CrossRefGoogle Scholar
  6. Barnett SF, Defeo-Jones D et al (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 385:399–408PubMedCrossRefGoogle Scholar
  7. Batra SK, Metzgar RS et al (1992) Expression of the human MUC1 mucin cDNA in a hamster pancreatic tumor cell line HP-1. Int J Pancreatol 12(3):271–283PubMedGoogle Scholar
  8. Bednar F, Simeone DM (2009) Pancreatic cancer stem cells and relevance to cancer treatments. J Cell Biochem 107(1):40–45PubMedCrossRefGoogle Scholar
  9. Bellacosa A, Testa JR et al (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254(5029):274–277PubMedCrossRefGoogle Scholar
  10. Bhowmick NA, Chytil A et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedCrossRefGoogle Scholar
  11. Biliran H Jr, Wang Y et al (2005) Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11(16):6075–6086PubMedCrossRefGoogle Scholar
  12. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365PubMedCrossRefGoogle Scholar
  13. Bodnar AG, Ouellette M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352PubMedCrossRefGoogle Scholar
  14. Bonner-Weir S, Taneja M et al (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97(14):7999–8004PubMedCrossRefGoogle Scholar
  15. Coffer PJ, Woodgett JR (1991) Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201(2):475–481PubMedCrossRefGoogle Scholar
  16. Davies SP, Reddy H et al (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(1):95–105PubMedCrossRefGoogle Scholar
  17. de la Tour D, Halvorsen T et al (2001) Beta-cell differentiation from a human pancreatic cell line in vitro and in vitro. Mol Endocrinol 15(3):476–483CrossRefGoogle Scholar
  18. De Lisle RC, Logsdon CD (1990) Pancreatic acinar cells in culture: expression of acinar and ductal antigens in a growth-related manner. Eur J Cell Biol 51(1):64–75PubMedGoogle Scholar
  19. DeFeo-Jones D, Barnett SF et al (2005) Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 4(2):271–279PubMedGoogle Scholar
  20. Dhillon N, Aggarwal BB et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499PubMedCrossRefGoogle Scholar
  21. Dong Z, Nemeth JA et al (2001) Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. Int J Cancer 93(4):507–515PubMedCrossRefGoogle Scholar
  22. Dragovich T, Huberman M et al (2007) Erlotinib plus gemcitabine in patients with unresectable pancreatic cancer and other solid tumors: phase IB trial. Cancer Chemother Pharmacol 60(2):295–303PubMedCrossRefGoogle Scholar
  23. Durkin AJ, Bloomston PM et al (2003) Defining the role of the epidermal growth factor receptor in pancreatic cancer grown in vitro. Am J Surg 186(5):431–436PubMedCrossRefGoogle Scholar
  24. Efrat S, Linde S et al (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 85(23):9037–9041PubMedCrossRefGoogle Scholar
  25. El-Rayes BF, Ali S et al (2008) Protein kinase C: a target for therapy in pancreatic cancer. Pancreas 36(4):346–352PubMedCrossRefGoogle Scholar
  26. El Fitori J, Su Y et al (2007) PKC 412 small-molecule tyrosine kinase inhibitor: single-compound therapy for pancreatic cancer. Cancer 110(7):1457–1468PubMedCrossRefGoogle Scholar
  27. Fruman DA, Meyers RE et al (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507PubMedCrossRefGoogle Scholar
  28. Fujioka S, Sclabas GM et al (2003) Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 22(9):1365–1370PubMedCrossRefGoogle Scholar
  29. Fukushima N, Sato N et al (2003) Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer 89(2):338–343PubMedCrossRefGoogle Scholar
  30. Furukawa T, Duguid WP et al (1996) Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol 148(6):1763–1770PubMedGoogle Scholar
  31. Gazdar AF, Chick WL et al (1980) Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci USA 77(6):3519–3523PubMedCrossRefGoogle Scholar
  32. Gleave M, Hsieh JT et al (1991) Acceleration of human prostate cancer growth in vitro by factors produced by prostate and bone fibroblasts. Cancer Res 51(14):3753–3761PubMedGoogle Scholar
  33. Gmyr V, Kerr-Conte J et al (2001) Human pancreatic ductal cells: large-scale isolation and expansion. Cell Transplant 10(1):109–121PubMedGoogle Scholar
  34. Greten FR, Weber CK et al (2002) Stat3 and NF-kappaB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 123(6):2052–2063PubMedCrossRefGoogle Scholar
  35. Guttridge DC, Albanese C et al (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19(8):5785–5799PubMedGoogle Scholar
  36. Hermann PC, Huber SL et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323PubMedCrossRefGoogle Scholar
  37. Hiles ID, Otsu M et al (1992) Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70(3):419–429PubMedCrossRefGoogle Scholar
  38. Hirota M, Egami H et al (1993) Production of scatter factor-like activity by a nitrosamine-induced pancreatic cancer cell line. Carcinogenesis 14(2):259–264PubMedCrossRefGoogle Scholar
  39. Holcomb B, Yip-Schneider M et al (2008) The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 36(3):225–235PubMedCrossRefGoogle Scholar
  40. Holloway SE, Beck AW et al (2006) Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann Surg Oncol 13(8):1145–1155PubMedCrossRefGoogle Scholar
  41. Hotz HG, Hines OJ et al (2005) VEGF antisense therapy inhibits tumor growth and improves survival in experimental pancreatic cancer. Surgery 137(2):192–199PubMedCrossRefGoogle Scholar
  42. Hu L, Hofmann J et al (2002) Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vitro ovarian cancer models. Cancer Res 62(4):1087–1092PubMedGoogle Scholar
  43. Hu L, Zaloudek C et al (2000) In vitro and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res 6(3):880–886PubMedGoogle Scholar
  44. Ishihara H, Asano T et al (1993) Pancreatic beta cell line MIN6 exhibits characteristics of glucose metabolism and glucose-stimulated insulin secretion similar to those of normal islets. Diabetologia 36(11):1139–1145PubMedCrossRefGoogle Scholar
  45. Janvier R, Sourla A et al (1997) Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 17(3A):1551–1557PubMedGoogle Scholar
  46. Jesnowski R, Liebe S et al (1998) Increasing the transfection efficacy and subsequent long-term culture of resting human pancreatic duct epithelial cells. Pancreas 17(3):262–265PubMedCrossRefGoogle Scholar
  47. Jesnowski R, Muller P et al (1999) Immortalized pancreatic duct cells in vitro and in vitro. Ann N Y Acad Sci 880:50–65PubMedCrossRefGoogle Scholar
  48. Jiang XR, Jimenez G et al (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–114PubMedCrossRefGoogle Scholar
  49. Jimenez C, Jones DR et al (1998) Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. Embo J 17(3):743–753PubMedCrossRefGoogle Scholar
  50. Kawakami Y, Nishimoto H et al (2004) Protein kinase C βII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279(46):47720–47725 PubMedCrossRefGoogle Scholar
  51. Kim SH, Um JH et al (2000) Potentiation of chemosensitivity in multidrug-resistant human leukemia CEM cells by inhibition of DNA-dependent protein kinase using wortmannin. Leuk Res 24(11):917–925PubMedCrossRefGoogle Scholar
  52. Kindler HL, Friberg G et al (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23(31):8033–8040PubMedCrossRefGoogle Scholar
  53. Knight ZA, Chiang GG et al (2004) Isoform-specific phosphoinositide 3-kinase inhibitors from an arylmorpholine scaffold. Bioorg Med Chem 12(17):4749–4759PubMedCrossRefGoogle Scholar
  54. Kondapaka SB, Singh SS et al (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103PubMedGoogle Scholar
  55. Kreuz S, Siegmund D et al (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21(12):3964–3973PubMedCrossRefGoogle Scholar
  56. Lawson T, Ouellette M et al (2005) Culture and immortalization of pancreatic ductal epithelial cells. Methods Mol Med 103:113–122PubMedGoogle Scholar
  57. Le X, Shi Q et al (2000) Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res 20:935–946PubMedCrossRefGoogle Scholar
  58. Li C, Heidt DG et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037PubMedCrossRefGoogle Scholar
  59. Lindsley CW, Zhao Z et al (2005) Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 15(3):761–764PubMedCrossRefGoogle Scholar
  60. Lucas-Clerc C, Massart C et al (1993) Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Mol Cell Endocrinol 94(1):9–20PubMedCrossRefGoogle Scholar
  61. Lynch DK, Ellis CA et al (1999) Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18(56):8024–8032PubMedCrossRefGoogle Scholar
  62. Maehara N, Matsumoto K et al (2001) NK4, a four-kringle antagonist of HGF, inhibits spreading and invasion of human pancreatic cancer cells. Br J Cancer 84(6):864–873PubMedCrossRefGoogle Scholar
  63. Maurel J, Martin-Richard M et al (2006) Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 66(5):1391–1398PubMedGoogle Scholar
  64. Melstrom LG, Grippo PJ (2008) Models of pancreatic cancer: understanding disease progression. In: Lowy A, Leach S, Philip P (eds) Pancreatic cancer. Springer Science, New York, pp 137–158Google Scholar
  65. McDade TP, Perugini RA et al (1999) Ubiquitin-proteasome inhibition enhances apoptosis of human pancreatic cancer cells. Surgery 126(2):371–377PubMedGoogle Scholar
  66. Moore MJ, Goldstein D et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966PubMedCrossRefGoogle Scholar
  67. Moore PS, Sipos B et al (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439(6):798–802PubMedGoogle Scholar
  68. Morales CP, Holt SE et al (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 21(1):115–118PubMedCrossRefGoogle Scholar
  69. Morita Y, Moriai T et al (1998) Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 23(1):41–50PubMedGoogle Scholar
  70. Muerkoster S, Arlt A et al (2003) Usage of the NF-kappaB inhibitor sulfasalazine as sensitizing agent in combined chemotherapy of pancreatic cancer. Int J Cancer 104(4):469–476PubMedCrossRefGoogle Scholar
  71. Muerkoster S, Wegehenkel K et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 64(4):1331–1337PubMedCrossRefGoogle Scholar
  72. Murthy SS, Tosolini A et al (2000) Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenet Cell Genet 88(1,2):38–40PubMedCrossRefGoogle Scholar
  73. Nakamura T, Matsumoto K et al (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57(15):3305–3313PubMedGoogle Scholar
  74. Ng SS, Tsao MS et al (2001) Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin Cancer Res 7(10):3269–3275PubMedGoogle Scholar
  75. Ng SS, Tsao MS et al (2002) Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol Cancer Ther 1(10):777–783PubMedGoogle Scholar
  76. Niedergethmann M, Hildenbrand R et al (2002) High expression of vascular endothelial growth factor predicts early recurrence and poor prognosis after curative resection for ductal adenocarcinoma of the pancreas. Pancreas 25(2):122–129PubMedCrossRefGoogle Scholar
  77. Niu J, Li Z et al (2004) Identification of an autoregulatory feedback pathway involving interleukin-1alpha in induction of constitutive NF-kappaB activation in pancreatic cancer cells. J Biol Chem 279(16):16452–16462PubMedCrossRefGoogle Scholar
  78. Ohta T, Numata M et al (1997) Neurotrophin-3 expression in human pancreatic cancers. J Pathol 181(4):405–412PubMedCrossRefGoogle Scholar
  79. Oikawa T, Hitomi J et al (1995) Frequent expression of genes for receptor tyrosine kinases and their ligands in human pancreatic cancer cells. Int J Pancreatol 18(1):15–23PubMedGoogle Scholar
  80. Oudit GY, Sun H et al (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37(2):449–471PubMedCrossRefGoogle Scholar
  81. Ouellette MM, Lee K (2001) Telomerase: diagnostics, cancer therapeutics and tissue engineering. Drug Discov Today 6(23):1231–1237PubMedCrossRefGoogle Scholar
  82. Ouyang H, Mou Lj et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623–1631PubMedGoogle Scholar
  83. Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047PubMedGoogle Scholar
  84. Praz GA, Halban PA et al (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210(2):345–352PubMedGoogle Scholar
  85. Roberson A, Jackson S et al (2001) Therapeutic morpholino-substituted compounds. WO 01/53266 A1, ThrombogenixGoogle Scholar
  86. Rosenzweig KE, Youmell MB et al (1997) Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res 3(7):1149–1156PubMedGoogle Scholar
  87. Rozenblum E, Schutte M et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57(9):1731–1734PubMedGoogle Scholar
  88. Saad S, Gottlieb DJ et al (2002) Cancer cell-associated fibronectin induces release of matrix metalloproteinase-2 from normal fibroblasts. Cancer Res 62(1):283–289PubMedGoogle Scholar
  89. Saif MW (2006) Anti-angiogenesis therapy in pancreatic carcinoma. J Pancreas 7(2):163–173Google Scholar
  90. Saito S, Nishimura N et al (1988) Establishment and characterization of a cultured cell line derived from nitrosamine-induced pancreatic ductal adenocarcinoma in Syrian golden hamsters. Gastroenterol Jpn 23(2):183–194PubMedGoogle Scholar
  91. Saito Y, Sunamura M et al (2006) Oncolytic replication-competent adenovirus suppresses tumor angiogenesis through preserved E1A region. Cancer Gene Ther 13(3):242–252PubMedCrossRefGoogle Scholar
  92. Sato N, Fukushima N et al (2003) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22(32):5021–5030PubMedCrossRefGoogle Scholar
  93. Schmied BM, Ulrich AB et al (2000) Biologic instability of pancreatic cancer xenografts in the nude mouse. Carcinogenesis 21(6):1121–1127PubMedCrossRefGoogle Scholar
  94. Schultz RM, Merriman RL et al (1995) In vitro and in vitro antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 15(4):1135–1139PubMedGoogle Scholar
  95. Sclabas GM, Fujioka S et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7(1):37–43; discussion 43PubMedCrossRefGoogle Scholar
  96. Seo Y, Baba H et al (2000) High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer 88(10):2239–2245PubMedCrossRefGoogle Scholar
  97. Sequist LV (2007) Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Oncologist 12:325–330Google Scholar
  98. Shah SA, Potter MW et al (2001) 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem 82(1):110–122PubMedCrossRefGoogle Scholar
  99. Shibayama E, Koizumi H (1996) Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol 148(6):1807–1818PubMedGoogle Scholar
  100. Siu LL, Awada A et al (2006) Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res 12(1):144–151PubMedCrossRefGoogle Scholar
  101. Sridhar SS, Hedley D et al (2005) Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4(4):677–685PubMedCrossRefGoogle Scholar
  102. Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5(3):203–220PubMedCrossRefGoogle Scholar
  103. Townsend CM Jr, Franklin RB et al (1982) Development of a transplantable model of pancreatic duct adenocarcinoma. Surgery 92(1):72–78PubMedGoogle Scholar
  104. Ulrich AB, Schmied BM et al (2002) Pancreatic cell lines: a review. Pancreas 24(2):111–120PubMedCrossRefGoogle Scholar
  105. Van Ummersen L, Binger K et al (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10(22):7450–7456PubMedCrossRefGoogle Scholar
  106. Wang CY, Guttridge DC et al (1999) NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19(9):5923–5929PubMedGoogle Scholar
  107. Wang CY, Mayo MW et al (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683PubMedCrossRefGoogle Scholar
  108. Wang S, Beattie GM et al (1997) Isolation and characterization of a cell line from the epithelial cells of the human fetal pancreas. Cell Transplant 6(1):59–67PubMedCrossRefGoogle Scholar
  109. Ward SG, Finan P (2003) Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol 3(4):426–434PubMedCrossRefGoogle Scholar
  110. Wilhelm SM, Adnane L et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140PubMedCrossRefGoogle Scholar
  111. Wilhelm SM, Carter C et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109PubMedCrossRefGoogle Scholar
  112. Wymann MP, Zvelebil M et al (2003) Phosphoinositide 3-kinase signalling–which way to target? Trends Pharmacol Sci 24(7):366–376PubMedCrossRefGoogle Scholar
  113. Xie K, Wei D et al (2006) Transcriptional anti-angiogenesis therapy of human pancreatic cancer. Cytokine Growth Factor Rev 17:147–156PubMedCrossRefGoogle Scholar
  114. Yamamoto Y, Yin MJ et al (1999) Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem 274(38):27307–27314PubMedCrossRefGoogle Scholar
  115. Yuan S, Rosenberg L et al (1996) Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation 61(1):67–75PubMedCrossRefGoogle Scholar
  116. Zhu Z, Friess H et al (1999) Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17(8):2419–2428PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Bhargava Mullapudi
  • Yongzeng Ding
  • Xianzhong Ding
  • Paul Grippo
    • 1
  1. 1.Department of Surgery, Feinberg School of Medicine R.H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUSA

Personalised recommendations