Transformation Optics and Electromagnetic Cloak of Invisibility

  • W. Cai
  • V. Shalaev


This chapter elaborates on the possibility and approach of using metamaterials to achieve the ultimate optical illusion – invisibility. Invisibility is a longtime dream that may date back to the very beginning of human civilization. The concept of being unseen and hence undetectable has appeared numerously in myths, legends, folklore and fiction as well as occurring in modern works such as movies, TV series and video games. For example, in the Greek mythology, the hero Perseus (son of Zeus) killed and beheaded Medusa (one of the Gorgons) when equipped with a helmet of invisibility. Also during the ancient Greek period, Plato described in his great work The Republic the ring of Gyges which could allow its owner to be invisible at will. This is one of the literary sources of many popular and similar subsequent stories, including the well-known book series and movie trilogy The Lord of the Rings.


Permeability Tensor Effective Permittivity Transformation Optic Radial Permeability Stealth Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tachi S (2003) Telexistence and retro-reflective projection technology (RPT). Proceedings of the 5th Virtual Reality International Conference (VRIC2003), Laval Virtual, FranceGoogle Scholar
  2. 2.
    Nicorovici NA, Mcphedran RC, Milton GW (1994) Optical and dielectric-properties of partially resonant composites. Phys Rev B 49:8479–8482CrossRefADSGoogle Scholar
  3. 3.
    Milton GW, Nicorovici NAP (2006) On the cloaking effects associated with anomalous localized resonance. Proc R Soc Lond Ser A 462:3027–3059zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Nicorovici NAP, Milton GW, McPhedran RC, Botten LC (2007) Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt Express 15:6314–6323CrossRefADSGoogle Scholar
  5. 5.
    Kerker M (1975) Invisible bodies. J Opt Soc Am 65:376–379CrossRefADSGoogle Scholar
  6. 6.
    Alu A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623CrossRefADSGoogle Scholar
  7. 7.
    Garcia de Abajo FJ, Gomez-Santos G, Blanco LA, Borisov AG, Shabanov SV (2005) Tunneling mechanism of light transmission through metallic films. Phys Rev Lett 95:067403CrossRefADSGoogle Scholar
  8. 8.
    Miller DAB (2006) On perfect cloaking. Opt Express 14:12457–12466CrossRefADSGoogle Scholar
  9. 9.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312: 1780–1782CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Greenleaf A, Lassas M, Uhlmann G (2003) Anisotropic conductivities that cannot be detected by EIT. Physiol Meas 24:413–419CrossRefGoogle Scholar
  12. 12.
    Benveniste Y, Miloh T (1999) Neutral inhomogeneities in conduction phenomena. J Mech Phys Solids 47:1873–1892zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Shalaev VM (2008) Transforming light. Science 322:384–386CrossRefGoogle Scholar
  14. 14.
    Tamm IE (1924) Electrodynamics of an anisotropic medium in the special theory of relativity. J Russ Phys Chem Soc 56:248Google Scholar
  15. 15.
    Tamm IE (1925) Crystal-optics of the theory of relativity pertinent to the geometry of a biquadratic form. J Russ Phys Chem Soc 57:1Google Scholar
  16. 16.
    Dolin LS (1961) On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling. Izv Vyssh Uchebn Zaved Radiofiz 4:964–967Google Scholar
  17. 17.
    Post EJ (1962) Formal structure of electromagnetics: general covariance and electromagnetics. Interscience, New YorkzbMATHGoogle Scholar
  18. 18.
    Lax M, Nelson DF (1976) Maxwell equations in material form. Phys Rev B 13:1777–1784CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Chew WC, Weedon WH (1994) A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates. Microw Opt Technol Lett 7:599–604CrossRefADSGoogle Scholar
  20. 20.
    Ward AJ, Pendry JB (1996) Refraction and geometry in Maxwell’s equations. J Mod Opt 43:773–793zbMATHMathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Milton GW, Briane M, Willis JR (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New J Phys 8:248CrossRefGoogle Scholar
  22. 22.
    Kildishev AV, Shalaev VM (2008) Engineering space for light via transformation optics. Opt Lett 33:43–45CrossRefADSGoogle Scholar
  23. 23.
    Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 1:063903CrossRefADSGoogle Scholar
  24. 24.
    Chen HY, Chan CT (2007) Transformation media that rotate electromagnetic fields. Appl Phys Lett 90:241105CrossRefADSGoogle Scholar
  25. 25.
    Kong FM, Wu BII, Kong JA, Huangfu JT, Xi S, Chen HS (2007) Planar focusing antenna design by using coordinate transformation technology. Appl Phys Lett 91:253509CrossRefADSGoogle Scholar
  26. 26.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRefADSGoogle Scholar
  27. 27.
    Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369CrossRefADSGoogle Scholar
  28. 28.
    Schurig D, Pendry JB, Smith DR (2006) Calculation of material properties and ray tracing in transformation media. Opt Express 14:9794–9804CrossRefADSGoogle Scholar
  29. 29.
    Leonhardt U, Philbin TG (2006) General relativity in electrical engineering. New J Phys 8:247CrossRefGoogle Scholar
  30. 30.
    Cummer SA, Popa BI, Schurig D, Smith DR, Pendry J (2006) Full-wave simulations of electromagnetic cloaking structures. Phys Rev E 74:036621CrossRefADSGoogle Scholar
  31. 31.
    Nachman AI (1988) Reconstructions from boundary measurements. Ann Math 128:531–576CrossRefMathSciNetGoogle Scholar
  32. 32.
    Wolf E, Habashy T (1993) Invisible bodies and uniqueness of the inverse scattering problem. J Mod Opt 40:785–792CrossRefADSGoogle Scholar
  33. 33.
    (2006) Breakthrough of the year – the runners-up. Science 314:1850–1855Google Scholar
  34. 34.
    Chen HY, Liang ZX, Yao PJ, Jiang XY, Ma HR, Chan CT (2007) Extending the bandwidth of electromagnetic cloaks. Phys Rev B 76:241104CrossRefADSGoogle Scholar
  35. 35.
    Kildishev AV, Cai W, Chettiar UK, Shalaev VM (2008) Transformation optics: approaching broadband electromagnetic cloaking. New J Phys 10:115029CrossRefGoogle Scholar
  36. 36.
    Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902CrossRefADSGoogle Scholar
  37. 37.
    Klein MW, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Single-slit split-ring resonators at optical frequencies: limits of size scaling. Opt Lett 31:1259–1261CrossRefADSGoogle Scholar
  38. 38.
    Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74CrossRefADSGoogle Scholar
  39. 39.
    Kildishev AV, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Shalaev VM (2006) Negative refractive index in optics of metal-dielectric composites. J Opt Soc Am B 23:423–433CrossRefADSGoogle Scholar
  40. 40.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227CrossRefADSGoogle Scholar
  41. 41.
    Klar TA, Kildishev AV, Drachev VP, Shalaev VM (2006) Negative-index metamaterials: going optical. IEEE J Sel Top Quantum Electron 12:1106–1115CrossRefGoogle Scholar
  42. 42.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105CrossRefADSGoogle Scholar
  43. 43.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452CrossRefADSGoogle Scholar
  44. 44.
    Aspnes DE (1982) Optical-properties of thin-films. Thin Solid Films 89:249–262CrossRefADSGoogle Scholar
  45. 45.
    Wiener O (1912) Die Theorie des Mischkorpers fur das Feld der stationaren Stromung. Abh Math-Phys Klasse Koniglich Sachsischen Des Wiss 32:509–604Google Scholar
  46. 46.
    Aspnes DE (1982) Bounds on allowed values of the effective dielectric function of 2-component composites at finite frequencies. Phys Rev B 25:1358–1361CrossRefADSGoogle Scholar
  47. 47.
    Bergman DJ (1980) Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric-constant of a 2-component composite-material. Phys Rev Lett 44:1285–1287CrossRefADSGoogle Scholar
  48. 48.
    Milton GW (1980) Bounds on the complex dielectric-constant of a composite-material. Appl Phys Lett 37:300–302CrossRefADSGoogle Scholar
  49. 49.
    Johnson PB, Christy RW (1972) Optical-constants of noble-metals. Phys Rev B 6:4370–4379CrossRefADSGoogle Scholar
  50. 50.
    Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  51. 51.
    Korobkin D, Urzhumov Y, Shvets G (2006) Enhanced near-field resolution in midinfrared using metamaterials. J Opt Soc Am B 23:468–478CrossRefADSGoogle Scholar
  52. 52.
    Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595CrossRefGoogle Scholar
  53. 53.
    Schuller JA, Zia R, Taubner T, Brongersma ML (2007) Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys Rev Lett 99:107401CrossRefADSGoogle Scholar
  54. 54.
    O’Brien S, Pendry JB (2002) Photonic band-gap effects and magnetic activity in dielectric composites. J Phys Condens Matter 14:4035–4044CrossRefADSGoogle Scholar
  55. 55.
    Huang KC, Povinelli ML, Joannopoulos JD (2004) Negative effective permeability in polaritonic photonic crystals. Appl Phys Lett 85:543–545CrossRefADSGoogle Scholar
  56. 56.
    Wheeler MS, Aitchison JS, Mojahedi M (2005) Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys Rev B 72:193103CrossRefADSGoogle Scholar
  57. 57.
    Peng L, Ran LX, Chen HS, Zhang HF, Kong JA, Grzegorczyk TM (2007) Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys Rev Lett 98:157403CrossRefADSGoogle Scholar
  58. 58.
    Li JS, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901CrossRefADSGoogle Scholar
  59. 59.
    Knupp PM, Steinberg S (1993) Fundamentals of grid generation. CRC Press, Boca Raton, FLGoogle Scholar
  60. 60.
    Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571CrossRefADSGoogle Scholar
  61. 61.
    Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photonics 3:461–463CrossRefADSGoogle Scholar
  62. 62.
    Smolyaninov II, Smolyaninova VN, Kildishev AV, Shalaev VM (2009) Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys Rev Lett 102:213901CrossRefADSGoogle Scholar
  63. 63.
    Leonhardt U, Tyc T (2009) Broadband invisibility by non-euclidean cloaking. Science 323:110–112CrossRefADSGoogle Scholar
  64. 64.
    Smolyaninov II, Hung YJ, Davis CC (2008) Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. Opt Lett 33:1342–1344CrossRefADSGoogle Scholar
  65. 65.
    Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations