Advertisement

Super Resolution with Meta-Lenses

  • W. Cai
  • V. Shalaev
Chapter

Abstract

In the previous two chapters, we described many intriguing properties in negative index materials (NIMs). One of the most striking predictions regarding NIMs as well as an exciting potential application is the “perfect lens.” Since light entering a NIM from free space will take a sharp turn at the interface, it is straightforward to see that a planar slab of NIM with sufficient thickness can act as a lens, sometimes dubbed as the Veselago lens. As depicted in Fig. 8.1c, diverging light rays from an object are negatively refracted at the first surface of the NIM slab, and the negative refraction of rays is repeated again at the second boundary. Consequently, the NIM slab creates an image within the slab and a second non-inverted image in the free space after the output interface. Compared to a conventional convex lens, the NIM lens looks quite exotic in that it does not have any axis or curvature, nor does it focus parallel rays or magnify small objects. All of these features were recognized in the seminal paper by Veselago [1]. The amazing properties of such a slab lens were first analyzed by J. B. Pendry, who pointed out that a slab with refractive index \(n = -1\) placed in vacuum allows the imaging of objects with sub-wavelength precision [2].

Keywords

Modulation Transfer Function Evanescent Wave Effective Permittivity Effective Medium Theory Evanescent Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov Phys Usp 10:509–514CrossRefADSGoogle Scholar
  2. 2.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefADSGoogle Scholar
  3. 3.
    Pendry JB, Smith DR (2004) Reversing light with negative refraction. Phys Today 57:37–43CrossRefGoogle Scholar
  4. 4.
    Smith DR, Schurig D, Rosenbluth M, Schultz S, Ramakrishna SA, Pendry JB (2003) Limitations on subdiffraction imaging with a negative refractive index slab. Appl Phys Lett 82:1506–1508CrossRefADSGoogle Scholar
  5. 5.
    Podolskiy VA, Narimanov EE (2005) Near-sighted superlens. Opt Lett 30:75–77CrossRefADSGoogle Scholar
  6. 6.
    Webb KJ, Yang M, Ward DW, Nelson KA (2004) Metrics for negative-refractive-index materials. Phys Rev E 70:035602CrossRefADSGoogle Scholar
  7. 7.
    Rao XS, Ong CK (2003) Subwavelength imaging by a left-handed material superlens. Phys Rev E 68:067601CrossRefADSGoogle Scholar
  8. 8.
    Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92:117403CrossRefADSGoogle Scholar
  9. 9.
    Lagarkov AN, Kissel VN (2004) Near-perfect imaging in a focusing system based on a left-handed-material plate. Phys Rev Lett 92:077401CrossRefADSGoogle Scholar
  10. 10.
    Aydin K, Bulu I, Ozbay E (2007) Subwavelength resolution with a negative-index metamaterial superlens. Appl Phys Lett 90:254102CrossRefADSGoogle Scholar
  11. 11.
    Liu ZW, Fang N, Yen TJ, Zhang X (2003) Rapid growth of evanescent wave by a silver superlens. Appl Phys Lett 83:5184–5186CrossRefADSGoogle Scholar
  12. 12.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefADSGoogle Scholar
  13. 13.
    Melville DOS, Blaikie RJ (2005) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134CrossRefADSGoogle Scholar
  14. 14.
    Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X (2005) Realization of optical superlens imaging below the diffraction limit. New J Phys 7:255CrossRefGoogle Scholar
  15. 15.
    Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595–1595CrossRefGoogle Scholar
  16. 16.
    Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2001) Imaging, compression and Poynting vector streamlines for negative permittivity materials. Electron Lett 37:1243–1244CrossRefGoogle Scholar
  17. 17.
    Ramakrishna SA, Pendry JB, Wiltshire MCK, Stewart WJ (2003) Imaging the near field. J Mod Opt 50:1419–1430ADSGoogle Scholar
  18. 18.
    Wood B, Pendry JB, Tsai DP (2006) Directed subwavelength imaging using a layered metal-dielectric system. Phys Rev B 74:115116CrossRefADSGoogle Scholar
  19. 19.
    de Ceglia D, Vincenti MA, Cappeddu MG, Centini M, Akozbek N, D’Orazio A, Haus JW, Bloemer MJ, Scalora M (2008) Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges. Phys Rev A 77:033848CrossRefADSGoogle Scholar
  20. 20.
    Belov PA, Hao Y (2006) Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B 73:113110CrossRefADSGoogle Scholar
  21. 21.
    Shalaev VM (2000) Nonlinear optics of random media: fractal composites and metal-dielectric films. Springer, BerlinGoogle Scholar
  22. 22.
    Cai WS, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys Rev B 72:193101CrossRefADSGoogle Scholar
  23. 23.
    Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  24. 24.
    Larkin IA, Stockman MI (2005) Imperfect perfect lens. Nano Lett 5:339–343CrossRefADSGoogle Scholar
  25. 25.
    Melville DOS, Blaikie RJ, Wolf CR (2004) Submicron imaging with a planar silver lens. Appl Phys Lett 84:4403–4405CrossRefADSGoogle Scholar
  26. 26.
    Ramakrishna SA, Pendry JB (2002) The asymmetric lossy near-perfect lens. J Mod Opt 49:1747–1762MATHCrossRefADSGoogle Scholar
  27. 27.
    Fang N, Zhang X (2003) Imaging properties of a metamaterial superlens. Appl Phys Lett 82:161–163CrossRefADSGoogle Scholar
  28. 28.
    Genov DA, Sarychev AK, Shalaev VM (2003) Metal-dielectric composite filters with controlled spectral windows of transparency. J Nonlinear Opt Phys Mater 12:419–440CrossRefADSGoogle Scholar
  29. 29.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Adrian FJ (1982) Charge-transfer effects in surface-enhanced Raman-scattering. J Chem Phys 77:5302–5314CrossRefADSGoogle Scholar
  31. 31.
    Durant S, Liu ZW, Steele JA, Zhang X (2006) Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J Opt Soc Am B 23:2383–2392CrossRefADSGoogle Scholar
  32. 32.
    Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7:403–408CrossRefADSGoogle Scholar
  33. 33.
    Raether H (1988) Surface plasmons. Springer, BerlinGoogle Scholar
  34. 34.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669CrossRefADSGoogle Scholar
  35. 35.
    Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822CrossRefADSGoogle Scholar
  36. 36.
    Xiong Y, Liu Z, Sun C, Zhang X (2007) Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett 7:3360–3365CrossRefADSGoogle Scholar
  37. 37.
    Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256CrossRefADSGoogle Scholar
  38. 38.
    Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys Rev B 74:075103CrossRefADSGoogle Scholar
  39. 39.
    Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1686CrossRefADSGoogle Scholar
  40. 40.
    Jacob Z, Alekseyev LV, Narimanov E (2007) Semiclassical theory of the hyperlens. J Opt Soc Am A 24:A54–A61CrossRefADSGoogle Scholar
  41. 41.
    Smolyaninov II, Hung YJ, Davis CC (2007) Magnifying superlens in the visible frequency range. Science 315:1699–1701CrossRefADSGoogle Scholar
  42. 42.
    Kildishev AV, Chettiar UK, Jacob Z, Shalaev VM, Narimanov EE (2009) Materializing a binary hyperlens design. Appl Phys Lett 94:071102CrossRefADSGoogle Scholar
  43. 43.
    Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Opt Lett 32:3432–3434CrossRefADSGoogle Scholar
  44. 44.
    Narimanov EE, Shalaev VM (2007) Beyond diffraction. Nature 447:266–267CrossRefADSGoogle Scholar
  45. 45.
    Shalaev VM (2008) Transforming light. Science 322:384–386CrossRefGoogle Scholar
  46. 46.
    Kildishev AV, Shalaev VM (2008) Engineering space for light via transformation optics. Opt Lett 33:43–45CrossRefADSGoogle Scholar
  47. 47.
    Kawata S, Ono A, Verma P (2008) Subwavelength colour imaging with a metallic nanolens. Nat Photonics 2:438–442CrossRefGoogle Scholar
  48. 48.
    Shvets G, Trendafilov S, Pendry JB, Sarychev A (2007) Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys Rev Lett 99:053903CrossRefADSGoogle Scholar
  49. 49.
    Huang FM, Zheludev N, Chen YF, de Abajo FJG (2007) Focusing of light by a nanohole array. Appl Phys Lett 90:091119CrossRefADSGoogle Scholar
  50. 50.
    Huang FM, Chen Y, de Abajo FJG, Zheludev NI (2007) Optical super-resolution through super-oscillations. J Opt A Pure Appl Opt 9:S285–S288CrossRefGoogle Scholar
  51. 51.
    Huang FM, Kao TS, Fedotov VA, Chen YF, Zheludev NI (2008) Nanohole array as a lens. Nano Lett 8:2469–2472CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations