Advertisement

Negative-Index Metamaterials

  • W. Cai
  • V. Shalaev
Chapter

Abstract

The refractive index is one of the most important parameters for an optical medium. Defined as \(n = c/v\), it measures the comparative velocity of light in different media. When a light beam travels across the boundary between two different materials, it bends owing to the change in refractive index at the interface. This phenomenon, refraction, gives the reason why a water pool appears shallower than it actually is, why a straw placed partially in water at a slant seems to bend towards the surface, and why people can use eyeglasses to adjust the path of light in front of their eyes and alleviate the effects of conditions such as myopia.

Keywords

Photonic Crystal Optical Frequency Effective Refractive Index Negative Refraction Poynting Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schuster A (1904) An introduction to the theory of optics. Arnold, LondonzbMATHGoogle Scholar
  2. 2.
    Lamb H (1904) On group-velocity. Proc Lond Math Soc 1:473–479CrossRefGoogle Scholar
  3. 3.
    Mandel’shtam LI (1945) Group velocity in a crystal lattice. Zh Eksp Teor Fiz 15:475–478Google Scholar
  4. 4.
    Sivukhin DV (1957) The energy of electromagnetic waves in dispersive media. Opt Spektrosk 3:308–312Google Scholar
  5. 5.
    Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov Phys Usp 10:509–514CrossRefADSGoogle Scholar
  6. 6.
    Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776CrossRefADSGoogle Scholar
  7. 7.
    Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084CrossRefADSGoogle Scholar
  8. 8.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefADSGoogle Scholar
  9. 9.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312: 1780–1782CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Berman PR (2002) Goos–Hanchen shift in negatively refractive media. Phys Rev E 66:067603CrossRefADSGoogle Scholar
  11. 11.
    Fu CJ, Zhang ZMM, First PN (2005) Brewster angle with a negative-index material. Appl Opt 44:3716–3724CrossRefADSGoogle Scholar
  12. 12.
    Thompson GHB (1955) Unusual waveguide characteristics associated with the apparent negative permeability obtainable in ferrites. Nature 175:1135–1136CrossRefADSGoogle Scholar
  13. 13.
    Hartstei A, Burstein E, Maradudi AA, Brewer R, Wallis RF (1973) Surface polaritons on semi-infinite gyromagnetic media. J Phys C Solid State Phys 6:1266–1276CrossRefADSGoogle Scholar
  14. 14.
    Depine RA, Lakhtakia A (2004) A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microw Opt Technol Lett 41:315–316CrossRefGoogle Scholar
  15. 15.
    Camley RE, Mills DL (1982) Surface-polaritons on uniaxial antiferromagnets. Phys Rev B 26:1280–1287CrossRefADSGoogle Scholar
  16. 16.
    Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRefADSGoogle Scholar
  17. 17.
    Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRefADSGoogle Scholar
  18. 18.
    Parazzoli CG, Greegor RB, Li K, Koltenbah BEC, Tanielian M (2003) Experimental verification and simulation of negative index of refraction using Snell’s law. Phys Rev Lett 90:107401CrossRefADSGoogle Scholar
  19. 19.
    Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358CrossRefADSGoogle Scholar
  20. 20.
    Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404CrossRefADSGoogle Scholar
  21. 21.
    Zhang S, Fan WJ, Malloy KJ, Brueck SRJ, Panoiu NC, Osgood RO (2006) Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J Opt Soc Am B 23:434–438CrossRefADSGoogle Scholar
  22. 22.
    Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Low-loss negative-index metamaterial at telecommunication wavelengths. Opt Lett 31:1800–1802CrossRefADSGoogle Scholar
  23. 23.
    Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312:892–894CrossRefADSGoogle Scholar
  24. 24.
    Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32:53–55CrossRefADSGoogle Scholar
  25. 25.
    Chettiar UK, Kildishev AV, Yuan HK, Cai WS, Xiao SM, Drachev VP, Shalaev VM (2007) Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt Lett 32:1671–1673CrossRefADSGoogle Scholar
  26. 26.
    Chen XL, He M, Du YX, Wang WY, Zhang DF (2005) Negative refraction: an intrinsic property of uniaxial crystals. Phys Rev B 72:113111CrossRefADSGoogle Scholar
  27. 27.
    McCall MW, Lakhtakia A, Weiglhofer WS (2002) The negative index of refraction demystified. Eur J Phys 23:353–359CrossRefGoogle Scholar
  28. 28.
    Lagarkov AN, Sarychev AK (1996) Electromagnetic properties of composites containing elongated conducting inclusions. Phys Rev B 53:6318–6336CrossRefADSGoogle Scholar
  29. 29.
    Podolskiy VA, Sarychev AK, Shalaev VM (2002) Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater 11:65–74CrossRefADSGoogle Scholar
  30. 30.
    Chettiar UK, Kildishev AV, Klar TA, Shalaev VM (2006) Negative index metamaterial combining magnetic resonators with metal films. Opt Express 14:7872–7877CrossRefADSGoogle Scholar
  31. 31.
    Zhou JF, Zhang L, Tuttle G, Koschny T, Soukoulis CM (2006) Negative index materials using simple short wire pairs. Phys Rev B 73:041101CrossRefADSGoogle Scholar
  32. 32.
    Dolling G, Wegener M, Linden S (2007) Realization of a three-functional-layer negative-index photonic metamaterial. Opt Lett 32:551–553CrossRefADSGoogle Scholar
  33. 33.
    Chettiar UK, Xiao S, Kildishev AV, Cai W, Yuan HK, Drachey VP, Shalaev VM (2008) Optical metamagnetism and negative-index metamaterials. MRS Bull 33:921–926Google Scholar
  34. 34.
    Kim E, Shen YR, Wu W, Ponizovskaya E, Yu Z, Bratkovsky AM, Wang SY, Williams RS (2007) Modulation of negative index metamaterials in the near-IR range. Appl Phys Lett 91:173105CrossRefADSGoogle Scholar
  35. 35.
    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRefADSGoogle Scholar
  36. 36.
    Notomi M (2000) Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys Rev B 62:10696–10705CrossRefADSGoogle Scholar
  37. 37.
    Luo C, Johnson SG, Joannopoulos JD, Pendry JB (2002) All-angle negative refraction without negative effective index. Phys Rev B 65:201104CrossRefADSGoogle Scholar
  38. 38.
    Foteinopoulou S, Soukoulis CM (2003) Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys Rev B 67:235107CrossRefADSGoogle Scholar
  39. 39.
    Berrier A, Mulot M, Swillo M, Qiu M, Thylen L, Talneau A, Anand S (2004) Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys Rev Lett 93:073902CrossRefADSGoogle Scholar
  40. 40.
    Schonbrun E, Tinker M, Park W, Lee JB (2005) Negative refraction in a Si-polymer photonic crystal membrane. IEEE Photonics Technol Lett 17:1196–1198CrossRefADSGoogle Scholar
  41. 41.
    Belov PA (2003) Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis. Microw Opt Technol Lett 37:259–263CrossRefGoogle Scholar
  42. 42.
    Podolskiy VA, Narimanov EE (2005) Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys Rev B 71:201101CrossRefADSGoogle Scholar
  43. 43.
    Alekseyev LV, Narimanov E (2006) Slow light and 3D imaging with non-magnetic negative index systems. Opt Express 14:11184–11193CrossRefADSGoogle Scholar
  44. 44.
    Hoffman AJ, Alekseyev L, Howard SS, Franz KJ, Wasserman D, Podolskiy VA, Narimanov EE, Sivco DL, Gmachl C (2007) Negative refraction in semiconductor metamaterials. Nat Mater 6:946–950CrossRefADSGoogle Scholar
  45. 45.
    Yao J, Liu ZW, Liu YM, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930CrossRefADSGoogle Scholar
  46. 46.
    Alu A, Engheta N (2006) Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes. J Opt Soc Am B 23:571–583CrossRefADSGoogle Scholar
  47. 47.
    Shin H, Fan SH (2006) All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys Rev Lett 96:073907CrossRefADSGoogle Scholar
  48. 48.
    Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science 316:430–432CrossRefADSGoogle Scholar
  49. 49.
    Agranovich VM, Shen YR, Baughman RH, Zakhidov AA (2004) Optical bulk and surface waves with negative refraction. J Lumin 110:167–173CrossRefGoogle Scholar
  50. 50.
    Engheta N, Salandrino A, Alu A (2005) Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504CrossRefADSGoogle Scholar
  51. 51.
    Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702CrossRefADSGoogle Scholar
  52. 52.
    Grbic A, Eleftheriades GV (2003) Periodic analysis of a 2-D negative refractive index transmission line structure. IEEE Trans Antennas Propag 51:2604–2611CrossRefADSGoogle Scholar
  53. 53.
    Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92:117403CrossRefADSGoogle Scholar
  54. 54.
    Khoo IC, Williams Y, Diaz A, Chen K, Bossard JA, Li L, Werner DH, Graugnard E, King JS, Jain S, Summers CJ (2006) Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development. Mol Cryst Liq Cryst 453:309–319CrossRefGoogle Scholar
  55. 55.
    Oktel MO, Mustecaplioglu OE (2004) Electromagnetically induced left-handedness in a dense gas of three-level atoms. Phys Rev A 70:053806CrossRefADSGoogle Scholar
  56. 56.
    Thommen Q, Mandel P (2006) Electromagnetically induced left handedness in optically excited four-level atomic media. Phys Rev Lett 96:053601CrossRefADSGoogle Scholar
  57. 57.
    Tretyakov S, Nefedov I, Sihvola A, Maslovski S, Simovski C (2003) Waves and energy in chiral nihility. J Electromagn Waves Appl 17:695–706CrossRefGoogle Scholar
  58. 58.
    Pendry JB (2004) A chiral route to negative refraction. Science 306:1353–1355CrossRefADSGoogle Scholar
  59. 59.
    Plum E, Zhou J, Dong J, Fedotov VA, Koschny T, Soukoulis CM, Zheludev NI (2009) Metamaterial with negative index due to chirality. Phys Rev B 79:035407CrossRefADSGoogle Scholar
  60. 60.
    Zhang S, Park YS, Li JS, Lu XC, Zhang WL, Zhang X (2009) Negative refractive index in chiral metamaterials. Phys Rev Lett 102:023901CrossRefADSGoogle Scholar
  61. 61.
    Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy due to electromagnetic coupling. Appl Phys Lett 90:223113CrossRefADSGoogle Scholar
  62. 62.
    Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations