Electric Metamaterials

  • W. Cai
  • V. Shalaev


This chapter deals with electric metamaterials – artificially structured materials with prescribed electric properties. Since such media were investigated long before the flourish of metamaterial research, we begin the chapter with a historical review of “artificial dielectrics” initiated by radio wave engineers in the mid-20th century. Next, we study two of the most important types of electric metamaterials: stratified metal-dielectric composite and periodic arrays of metallic wires. These metamaterials serve as starting points for many advanced material structures and devices, such as negative-index materials, meta-lenses and electromagnetic cloaks. We also briefly discuss the optical properties of random metal-dielectric composites, which can be regarded as disordered electric metamaterials.


Percolation Threshold Wire Array Effective Permittivity Effective Electron Mass Metallic Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kock WE (1946) Metal-lens antennas. Proc IRE 34:828–836CrossRefGoogle Scholar
  2. 2.
    Kock WE (1948) Metallic delay lenses. Bell Syst Tech J 27:58–82Google Scholar
  3. 3.
    Brown J (1953) Artificial dielectrics having refractive indices less than unity. Proc IEE 100:51–62Google Scholar
  4. 4.
    Golden KE (1965) Plasma simulation with an artificial dielectric in a horn geometry. IEEE Trans Antennas Propag 13:587–594CrossRefADSGoogle Scholar
  5. 5.
    Rotman W (1962) Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans Antennas Propag 10:82–95CrossRefADSGoogle Scholar
  6. 6.
    Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776CrossRefADSGoogle Scholar
  7. 7.
    Smith DR, Kroll N (2000) Negative refractive index in left-handed materials. Phys Rev Lett 85:2933–2936CrossRefADSGoogle Scholar
  8. 8.
    Silin RA (1972) Optical properties of artificial dielectrics. Radiophys Quantum Electron 15:809–820CrossRefGoogle Scholar
  9. 9.
    Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1:41–48CrossRefADSGoogle Scholar
  10. 10.
    Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686–1686CrossRefADSGoogle Scholar
  11. 11.
    Luneburg RK (1944) Mathematical theory of optics. Brown University, ProvidenceGoogle Scholar
  12. 12.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227CrossRefADSGoogle Scholar
  13. 13.
    Wiener O (1912) Die Theorie des Mischkorpers fur das Feld der stationaren Stromung. Abh Math-Phys Klasse Koniglich Sachsischen Des Wiss 32:509–604Google Scholar
  14. 14.
    Aspnes DE (1982) Local-field effects and effective-medium theory – a microscopic perspective. Am J Phys 50:704–709CrossRefADSGoogle Scholar
  15. 15.
    Aspnes DE (1982) Optical-properties of thin-films. Thin Solid Films 89:249–262CrossRefADSGoogle Scholar
  16. 16.
    Palik ED (ed) (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar
  17. 17.
    Engheta N (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317:1698–1702CrossRefADSGoogle Scholar
  18. 18.
    Ramakrishna SA, Pendry JB, Wiltshire MCK, Stewart WJ (2003) Imaging the near field. J Mod Opt 50:1419–1430ADSGoogle Scholar
  19. 19.
    Belov PA, Hao Y (2006) Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B 73:113110CrossRefADSGoogle Scholar
  20. 20.
    Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256CrossRefADSGoogle Scholar
  21. 21.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452CrossRefADSGoogle Scholar
  22. 22.
    Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons in thin-wire structures. J Phys Condens Matter 10:4785–4809CrossRefADSGoogle Scholar
  23. 23.
    Sarychev AK, Shalaev VM (2001) Comment on paper “Extremely low frequency plasmons in metallic mesostructures”. [JB Pendrey et al (1996) Phys Rev Lett 76:4773]. arXiv:cond-mat/0103145Google Scholar
  24. 24.
    Sarychev AK, Shalaev VM (2007) Electrodynamics of metamaterials. World Scientific, SingaporeMATHCrossRefGoogle Scholar
  25. 25.
    Maslovski SI, Tretyakov SA, Belov PA (2002) Wire media with negative effective permittivity: a quasi-static model. Microw Opt Tech Lett 35:47–51CrossRefGoogle Scholar
  26. 26.
    Markos P, Soukoulis CM (2003) Absorption losses in periodic arrays of thin metallic wires. Opt Lett 28:846–848CrossRefADSGoogle Scholar
  27. 27.
    Belov PA, Tretyakov SA, Viitanen AJ (2002) Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires. J Electromagnet Wave Appl 16:1153–1170CrossRefGoogle Scholar
  28. 28.
    Wu DM, Fang N, Sun C, Zhang X, Padilla WJ, Basov DN, Smith DR, Schultz S (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201–203CrossRefADSGoogle Scholar
  29. 29.
    Silveirinha MG (2006) Nonlocal homogenization model for a periodic array of epsilon-negative rods. Phys Rev E 73:046612CrossRefADSGoogle Scholar
  30. 30.
    Schwartz BT, Piestun R (2003) Total external reflection from metamaterials with ultralow refractive index. J Opt Soc Am B 20:2448–2453CrossRefADSGoogle Scholar
  31. 31.
    Schwartz BT, Piestun R (2004) Waveguiding in air by total external reflection from ultralow index metamaterials. Appl Phys Lett 85:1–3CrossRefADSGoogle Scholar
  32. 32.
    Rodriguez-Esquerre VF, Koshiba M, Hernandez-Figueroa HE, Rubio-Mercedes CE (2005) Power splitters for waveguides composed by ultralow refractive index metallic nanostructures. Appl Phys Lett 87:091101CrossRefADSGoogle Scholar
  33. 33.
    Belov PA, Marques R, Maslovski SI, Nefedov IS, Silveirinha M, Simovski CR, Tretyakov SA (2003) Strong spatial dispersion in wire media in the very large wavelength limit. Phys Rev B 67:113103CrossRefADSGoogle Scholar
  34. 34.
    Shapiro MA, Shvets G, Sirigiri JR, Temkin RJ (2006) Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves. Opt Lett 31:2051–2053CrossRefADSGoogle Scholar
  35. 35.
    Demetriadou A, Pendry JB (2008) Taming spatial dispersion in wire metamaterial. J Phys Condens Matter 20:295222CrossRefGoogle Scholar
  36. 36.
    Sarychev AK, Shalaev VM (2000) Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys Rep 335:276–371CrossRefADSGoogle Scholar
  37. 37.
    Genov DA, Sarychev AK, Shalaev VM (2003) Plasmon localization and local field distribution in metal-dielectric films. Phys Rev E 67:056611CrossRefADSGoogle Scholar
  38. 38.
    Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109: 1492–1505CrossRefADSGoogle Scholar
  39. 39.
    Shalaev VM (2000) Nonlinear optics of random media: Fractal composites and metal-dielectric films. Springer, BerlinGoogle Scholar
  40. 40.
    Gresillon S, Aigouy L, Boccara AC, Rivoal JC, Quelin X, Desmarest C, Gadenne P, Shubin VA, Sarychev AK, Shalaev VM (1999) Experimental observation of localized optical excitations in random metal-dielectric films. Phys Rev Lett 82:4520–4523CrossRefADSGoogle Scholar
  41. 41.
    Brouers F, Blacher S, Lagarkov AN, Sarychev AK, Gadenne P, Shalaev VM (1997) Theory of giant Raman scattering from semicontinuous metal films. Phys Rev B 55:13234–13245CrossRefADSGoogle Scholar
  42. 42.
    Shalaev VM, Sarychev AK (1998) Nonlinear optics of random metal-dielectric films. Phys Rev B 57:13265–13288CrossRefADSGoogle Scholar
  43. 43.
    Osawa M, Ikeda M (1991) Surface-enhanced infrared-absorption of para-nitrobenzoic acid deposited on silver island films – contributions of electromagnetic and chemical mechanisms. J Phys Chem 95:9914–9919CrossRefGoogle Scholar
  44. 44.
    Yagil Y, Deutscher G (1992) Third-Harmonic generation in semicontinuous metal-films. Phys Rev B 46:16115–16121CrossRefADSGoogle Scholar
  45. 45.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRefADSGoogle Scholar
  46. 46.
    Safonov VP, Shalaev VM, Markel VA, Danilova YE, Lepeshkin NN, Kim W, Rautian SG, Armstrong RL (1998) Spectral dependence of selective photomodification in fractal aggregates of colloidal particles. Phys Rev Lett 80:1102–1105CrossRefADSGoogle Scholar
  47. 47.
    Nyga P, Drachev VP, Thoreson MD, Shalaev VM (2008) Mid-IR plasmonics and photomodification with Ag films. Appl Phys B 93:59–68CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations