Advertisement

Experimental Techniques and Data Treatment

  • W. Cai
  • V. Shalaev
Chapter

Abstract

Chapter 3 treats the fabrication techniques, characterization schemes and data treatment methods that are very general for the study of optical metamaterials. The chapter starts with a broad overview of fabrication processes commonly used for quasi-two-dimensional optical metamaterials, including electron beam lithography, focused ion beam milling, interference lithography and nanoimprint lithography. We then discuss a few techniques for truly three-dimensional metal-dielectric nanostructures. We also present commonly used characterization methods for testing the spectral properties of optical metamaterials. Finally, in the last section we discuss a technique for the extraction of the homogenized effective parameters from experimental observables.

Keywords

Photonic Crystal Nanoimprint Lithography Direct Laser Writing Interference Lithography Metamaterial Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boltasseva A, Shalaev VM (2008) Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2:1–17CrossRefADSGoogle Scholar
  2. 2.
    Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358CrossRefADSGoogle Scholar
  3. 3.
    Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV, Drachev VP, Shalaev VM (2007) Metamagnetics with rainbow colors. Opt Express 15:3333–3341CrossRefADSGoogle Scholar
  4. 4.
    Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy due to electromagnetic coupling. Appl Phys Lett 90:223113CrossRefADSGoogle Scholar
  5. 5.
    Enkrich C, Perez-Willard R, Gerthsen D, Zhou JF, Koschny T, Soukoulis CM, Wegener M, Linden S (2005) Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv Mat 17:2547–2549CrossRefGoogle Scholar
  6. 6.
    Zhang S, Fan WJ, Minhas BK, Frauenglass A, Malloy KJ, Brueck SRJ (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402CrossRefADSGoogle Scholar
  7. 7.
    Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404CrossRefADSGoogle Scholar
  8. 8.
    Feth N, Enkrich C, Wegener M, Linden S (2007) Large-area magnetic metamaterials via compact interference lithography. Opt Express 15:501–507CrossRefADSGoogle Scholar
  9. 9.
    Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mat 19:495–513CrossRefGoogle Scholar
  10. 10.
    Wu W, Kim E, Ponizovskaya E, Liu Y, Yu Z, Fang N, Shen YR, Bratkovsky AM, Tong W, Sun C, Zhang X, Wang SY, Williams RS (2007) Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl Phys A 87:143–150CrossRefADSGoogle Scholar
  11. 11.
    Wu W, Yu ZN, Wang SY, Williams RS, Liu YM, Sun C, Zhang X, Kim E, Shen YR, Fang NX (2007) Midinfrared metamaterials fabricated by nanoimprint lithography. Appl Phys Lett 90:063107CrossRefADSGoogle Scholar
  12. 12.
    Chen YF, Tao JR, Zhao XZ, Cui Z, Schwanecke AS, Zheludev NI (2005) Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron Eng 78–79:612–617CrossRefGoogle Scholar
  13. 13.
    Chettiar UK, Xiao S, Kildishev AV, Cai W, Yuan HK, Drachey VP, Shalaev VM (2008) Optical metamagnetism and negative-index metamaterials. MRS Bull 33:921–926Google Scholar
  14. 14.
    Zhang SA, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2006) Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt Express 14:6778–6787CrossRefADSGoogle Scholar
  15. 15.
    Dolling G, Wegener M, Linden S (2007) Realization of a three-functional-layer negative-index photonic metamaterial. Opt Lett 32:551–553CrossRefADSGoogle Scholar
  16. 16.
    Liu N, Guo HC, Fu LW, Kaiser S, Schweizer H, Giessen H (2008) Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7:31–37CrossRefADSGoogle Scholar
  17. 17.
    Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRefADSGoogle Scholar
  18. 18.
    Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices – micromachines can be created with higher resolution using two-photon absorption. Nature 412:697–698CrossRefADSGoogle Scholar
  19. 19.
    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl Phys Lett 88:083110CrossRefADSGoogle Scholar
  20. 20.
    Takeyasu N, Tanaka T, Kawata S (2008) Fabrication of 3D metal/polymer microstructures by site-selective metal coating. Appl Phys A 90:205–209CrossRefADSGoogle Scholar
  21. 21.
    Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809CrossRefADSGoogle Scholar
  22. 22.
    Farrer RA, LaFratta CN, Li LJ, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128: 1796–1797CrossRefGoogle Scholar
  23. 23.
    Rill MS, Plet C, Thiel M, Staude I, Von Freymann G, Linden S, Wegener M (2008) Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater 7:543–546CrossRefADSGoogle Scholar
  24. 24.
    Li LJ, Fourkas JT (2007) Multiphoton polymerization. Mater Today 10:30–37CrossRefGoogle Scholar
  25. 25.
    Griffith S, Mondol M, Kong DS, Jacobson JM (2002) Nanostructure fabrication by direct electron-beam writing of nanoparticles. J Vac Sci Technol B 20:2768–2772CrossRefGoogle Scholar
  26. 26.
    Morita T, Kondo K, Hoshino T, Kaito T, Fujita J, Ichihashi T, Ishida M, Ochiai Y, Tajima T, Matsui S (2004) Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 22:3137–3142CrossRefGoogle Scholar
  27. 27.
    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404:53–56CrossRefADSGoogle Scholar
  28. 28.
    Ehrfeld W, Lehr H (1995) Deep X-ray-lithography for the production of 3-dimensional microstructures from metals, polymers and ceramics. Radiat Phys Chem 45:349–365CrossRefADSGoogle Scholar
  29. 29.
    Kehagias N, Reboud V, Chansin G, Zelsmann M, Jeppesen C, Schuster C, Kubenz M, Reuther F, Gruetzner G, Torres CMS (2007) Reverse-contact UV nanoimprint lithography for multilayered structure fabrication. Nanotechnology 18:175303CrossRefADSGoogle Scholar
  30. 30.
    Busch K, von Freymann G, Linden S, Mingaleev SF, Tkeshelashvili L, Wegener M (2007) Periodic nanostructures for photonics. Phys Rep 444:101–202CrossRefADSGoogle Scholar
  31. 31.
    Galisteo JF, Garcia-Santamaria F, Golmayo D, Juarez BH, Lopez C, Palacios E (2005) Self-assembly approach to optical metamaterials. J Opt A Pure Appl. Opt. 7:S244–S254CrossRefADSGoogle Scholar
  32. 32.
    Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405:437–440CrossRefADSGoogle Scholar
  33. 33.
    Chen Z, Zhan P, Wang ZL, Zhang JH, Zhang WY, Ming NB, Chan CT, Sheng P (2004) Two- and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv Mat 16:417–422CrossRefGoogle Scholar
  34. 34.
    Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRefADSGoogle Scholar
  35. 35.
    Yao J, Liu ZW, Liu YM, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930CrossRefADSGoogle Scholar
  36. 36.
    Kim E, Shen YR, Wu W, Ponizovskaya E, Yu Z, Bratkovsky AM, Wang SY, Williams RS (2007) Modulation of negative index metamaterials in the near-IR range. Appl. Phys. Lett. 91:173105CrossRefADSGoogle Scholar
  37. 37.
    Drachev VP, Cai W, Chettiar U, Yuan HK, Sarychev AK, Kildishev AV, Klimeck G, Shalaev VM (2006) Experimental verification of an optical negative-index material. Laser Phys Lett 3:49–55CrossRefADSGoogle Scholar
  38. 38.
    Kildishev AV, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Shalaev VM (2006) Negative refractive index in optics of metal-dielectric composites. J Opt Soc Am B 23:423–433CrossRefADSGoogle Scholar
  39. 39.
    Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312:892–894CrossRefADSGoogle Scholar
  40. 40.
    Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32:53–55CrossRefADSGoogle Scholar
  41. 41.
    Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496CrossRefADSGoogle Scholar
  42. 42.
    Nilsson PO (1968) Determination of optical constants from intensity measurements at normal incidence. Appl Opt 7:435–442CrossRefADSGoogle Scholar
  43. 43.
    Heavens OS (1955) Optical properties of thin solid films. Butterworths, LondonGoogle Scholar
  44. 44.
    Roessler DM (1965) Kramers–Kronig analysis of reflection data. Br J Appl Phys 16: 1119–1123CrossRefADSGoogle Scholar
  45. 45.
    Smith DR, Schultz S, Markos P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104CrossRefADSGoogle Scholar
  46. 46.
    Markos P, Soukoulis CM (2003) Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Express 11:649–661CrossRefADSGoogle Scholar
  47. 47.
    Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag 51:1516–1529CrossRefADSGoogle Scholar
  48. 48.
    Chen XD, Grzegorczyk TM, Wu BI, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608CrossRefADSGoogle Scholar
  49. 49.
    Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617CrossRefADSGoogle Scholar
  50. 50.
    Koschny T, Markos P, Smith DR, Soukoulis CM (2003) Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys Rev E 68:065602CrossRefADSGoogle Scholar
  51. 51.
    Kyriazidou CA, Contopanagos HF, Merrill WM, Alexopoulos NG (2000) Artificial versus natural crystals: effective wave impedance of printed photonic bandgap materials. IEEE Trans Antennas Propag 48:95–106zbMATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    Wolf E, Habashy T (1993) Invisible bodies and uniqueness of the inverse scattering problem. J Mod Opt 40:785–792CrossRefADSGoogle Scholar
  53. 53.
    Chen X, Wu BI, Kong JA, Grzegorczyk TM (2005) Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E 71:046610CrossRefADSGoogle Scholar
  54. 54.
    Menzel C, Rockstuhl C, Paul T, Lederer F (2008) Retrieving effective parameters for quasiplanar chiral metamaterials. Appl Phys Lett 93:233106CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations