• W. CaiEmail author
  • V. ShalaevEmail author


As the starting point of the book, Chap. 1 discusses the conception, emergence, motivation and scope of the research field of optical metamaterials. We present a definition of the term “metamaterials,” emphasizing both the man-made nature and the character of macroscopic homogeneity in such materials. The emergence of optical metamaterials is explored within a larger historical context. Notable examples of optical metamaterials and exciting opportunities associated with them are briefly reviewed. At the end of the chapter, we introduce the effective parameters and notation conventions that are used in our descriptions of metamaterials throughout the book.


Photonic Crystal Electromagnetic Property Conventional Material Electromagnetic Response Inhomogeneity Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRefADSGoogle Scholar
  2. 2.
    Wikipedia (2009) Metamaterial., Accessed April, 2009
  3. 3.
    Walser RM (2001) Electromagnetic metamaterials. In: Lakhtakia A, Weiglhofer WS, Hodgkinson IJ (eds) Complex mediums II: beyond linear isotropic dielectrics, Proc. SPIE 4467, SPIE – International Society for Optical Engineering, San Diego, CA, USA, pp. 1–15Google Scholar
  4. 4.
    Lakhtakia A, Mackay TG (2007) Meet the metamaterials. Opt Photon News 18:32–39CrossRefADSGoogle Scholar
  5. 5.
    Metamorphose Accessed April, 2009
  6. 6.
    Pendry JB, Smith DR (2006) The quest for the superlens. Sci Am 295:60–67CrossRefGoogle Scholar
  7. 7.
    Stavenga DG (2006) Invertebrate superposition eyes-structures that behave like metamaterial with negative refractive index. J Eur Opt Soc 1:06010CrossRefGoogle Scholar
  8. 8.
    Kinoshita S, Yoshioka S, Kawagoe K (2002) Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc R Soc Lond Ser B 269:1417–1421CrossRefGoogle Scholar
  9. 9.
    Barber DJ, Freestone IC (1990) An investigation of the origin of the color of the Lycurgus cup by analytical transmission electron-microscopy. Archaeometry 32:33–45CrossRefGoogle Scholar
  10. 10.
    Wagner FE, Haslbeck S, Stievano L, Calogero S, Pankhurst QA, Martinek P (2000) Before striking gold in gold-ruby glass. Nature 407:691–692CrossRefADSGoogle Scholar
  11. 11.
    Leonhardt U (2007) Optical metamaterials – invisibility cup. Nat Photonics 1:207–208CrossRefADSGoogle Scholar
  12. 12.
    Bose JC (1898) On the rotation of plane of polarization of electric waves by a twisted structure. Proc R Soc Lond 63:146–152CrossRefGoogle Scholar
  13. 13.
    Kock WE (1946) Metal-lens antennas. Proc IRE 34:828–836CrossRefGoogle Scholar
  14. 14.
    Brown J (1953) Artificial dielectrics having refractive indices less than unity. Proc IEE 100: 51–62Google Scholar
  15. 15.
    Rotman W (1962) Plasma simulation by artificial dielectrics and parallel-plate media. IEE Trans Antennas Propag AP-10:82–95Google Scholar
  16. 16.
    Hardy WN, Whitehead LA (1981) Split-ring resonator for use in magnetic-resonance from 200–2000 Mhz. Rev Sci Instrum 52:213–216CrossRefADSGoogle Scholar
  17. 17.
    Froncisz W, Hyde JS (1982) The loop-gap resonator – a new microwave lumped circuit electron-spin-resonance sample structure. J Magn Reson 47:515–521Google Scholar
  18. 18.
    Hong JS, Lancaster MJ (1996) Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters. IEEE Trans Microw Theory Tech 44:2099–2109CrossRefADSGoogle Scholar
  19. 19.
    Saadoun MMI, Engheta N (1992) A reciprocal phase-shifter using novel pseudochiral or omega-medium. Microw Opt Tech Lett 5:184–188CrossRefGoogle Scholar
  20. 20.
    Veselago VG (1968) Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov Phys Usp 10:509–514CrossRefADSGoogle Scholar
  21. 21.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefADSGoogle Scholar
  22. 22.
    Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353CrossRefADSGoogle Scholar
  23. 23.
    Zhang S, Fan WJ, Minhas BK, Frauenglass A, Malloy KJ, Brueck SRJ (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402CrossRefADSGoogle Scholar
  24. 24.
    Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV, Drachev VP, Shalaev VM (2007) Metamagnetics with rainbow colors. Opt Express 15:3333–3341CrossRefADSGoogle Scholar
  25. 25.
    Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358CrossRefADSGoogle Scholar
  26. 26.
    Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404CrossRefADSGoogle Scholar
  27. 27.
    Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312:892–894CrossRefADSGoogle Scholar
  28. 28.
    Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32:53–55CrossRefADSGoogle Scholar
  29. 29.
    Chettiar UK, Kildishev AV, Yuan HK, Cai WS, Xiao SM, Drachev VP, Shalaev VM (2007) Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt Lett 32:1671–1673CrossRefADSGoogle Scholar
  30. 30.
    Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy due to electromagnetic coupling. Appl Phys Lett 90:223113CrossRefADSGoogle Scholar
  31. 31.
    Decker M, Klein MW, Wegener M, Linden S (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32:856–858CrossRefADSGoogle Scholar
  32. 32.
    Klein MW, Enkrich C, Wegener M, Linden S (2006) Second-harmonic generation from magnetic metamaterials. Science 313:502–504CrossRefADSGoogle Scholar
  33. 33.
    Klein MW, Wegener M, Feth N, Linden S (2007) Experiments on second- and third-harmonic generation from magnetic metamaterials. Opt Express 15:5238–5247CrossRefADSGoogle Scholar
  34. 34.
    Popov AK, Shalaev VM (2006) Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification. Appl Phys B 84:131–137CrossRefADSGoogle Scholar
  35. 35.
    Popov AK, Shalaev VM (2006) Compensating losses in negative-index metamaterials by optical parametric amplification. Opt Lett 31:2169–2171CrossRefADSGoogle Scholar
  36. 36.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefADSGoogle Scholar
  37. 37.
    Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595CrossRefGoogle Scholar
  38. 38.
    Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686CrossRefADSGoogle Scholar
  39. 39.
    Liu ZW, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Far-field optical superlens. Nano Lett 7:403–408CrossRefADSGoogle Scholar
  40. 40.
    Cai WS, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys Rev B 72:193101CrossRefADSGoogle Scholar
  41. 41.
    Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256CrossRefADSGoogle Scholar
  42. 42.
    Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312: 1780–1782CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRefADSGoogle Scholar
  44. 44.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photonics 1:224–227CrossRefADSGoogle Scholar
  45. 45.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM, Milton GW (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105CrossRefADSGoogle Scholar
  46. 46.
    Cai WS, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452CrossRefADSGoogle Scholar
  47. 47.
    Jackson JD (1998) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  48. 48.
    Pendry JB (2003) Focus issue: negative refraction and metamaterials – introduction. Opt Express 11:639CrossRefADSGoogle Scholar
  49. 49.
    Thompson GHB (1955) Unusual waveguide characteristics associated with the apparent negative permeability obtainable in ferrites. Nature 175:1135–1136CrossRefADSGoogle Scholar
  50. 50.
    Agranovich VM, Shen YR, Baughman RH, Zakhidov AA (2004) Linear and nonlinear wave propagation in negative refraction metamaterials. Phys Rev B 69:165112CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations