Skip to main content

APC in Cell Migration

  • Chapter
APC Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 656))

Abstract

Adenomatous Polyposis Coli (APC) is a tumor suppressor protein involved in the initiation and progression of colon cancer. The most widely accepted function of APC is to participate to the Wnt signaling pathway, by downregulating β-catenin and thereby controlling gene transcription and cell proliferation. However, APC is clearly a multifunctional protein whose loss contributes to tumor formation in multiple ways. Regulation of APC localization during cell migration and the ability of APC to bind multiple polarity proteins and microtubule-associated molecules support the idea that APC plays a key role in directed cell migration and that this function may contribute to its tumour suppressor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powell SM, Zilz N, Beazer-Barclay Y et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992; 359(6392):235–237.

    Article  CAS  PubMed  Google Scholar 

  2. Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 1997; 78(4):219–243.

    Article  CAS  PubMed  Google Scholar 

  3. Smith KJ, Johnson KA, Bryan TM et al. The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA 1993; 90(7):2846–2850.

    Article  CAS  PubMed  Google Scholar 

  4. Lamprecht SA, Lipkin M. Migrating colonic crypt epithelial cells: primary targets for transformation. Carcinogenesis 2002; 23(11):1777–1780.

    Article  CAS  PubMed  Google Scholar 

  5. Moss SF, Liu TC, Petrotos A et al. Inward growth of colonic adenomatous polyps. Gastroenterology 1996; 111(6):1425–1432.

    Article  CAS  PubMed  Google Scholar 

  6. He TC, Sparks AB, Rago C et al. Identification of c-MYC as target of the APC pathway. Science 1998; 281:1509–1512.

    Article  CAS  PubMed  Google Scholar 

  7. McDonald SA, Preston SL, Lovell MJ et al. Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 2006; 3(5):267–274.

    Article  CAS  PubMed  Google Scholar 

  8. Pinto D, Clevers H. Wnt control stem cells and differentiation in the intestinal epithelium. Exp Cell Res 2006; 306(2):357–363.

    Article  Google Scholar 

  9. Sansom OJ, Reed KR, Hayes AJ et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation and migration. Genes Dev 2004; 18(12):1385–1390.

    Article  CAS  PubMed  Google Scholar 

  10. Hoier EF, Mohler WA, Kim SK et al. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev 2000; 14(7):874–886.

    CAS  PubMed  Google Scholar 

  11. Fearnhead NS, Wilding JL, Bodmer WF. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull 2002; 64:27–43.

    Article  CAS  PubMed  Google Scholar 

  12. Mahmoud NN, Bilinski RT, Churchill MR et al. Genotype-phenotype correlation in murine Apc mutation: differences in enterocyte migration and response to sulindac. Cancer Res 1999; 59(2):353–359.

    CAS  PubMed  Google Scholar 

  13. Mahmoud NN, Boolbol SK, Bilinski RT et al. Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Res 1997; 57(22):5045–5050.

    CAS  PubMed  Google Scholar 

  14. Su LK, Johnson KA, Smith KJ et al. Association between wild type and mutant APC gene products. Cancer Res 1993; 53(12):2728–2731.

    CAS  PubMed  Google Scholar 

  15. Oshima M, Oshima H, Kitagawa K et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 1995; 92(10):4482–4486.

    Article  CAS  PubMed  Google Scholar 

  16. Oshima M, Oshima H, Kobayashi M et al. Evidence against dominant negative mechanisms of intestinal polyp formation by Apc gene mutations. Cancer Res 1995; 55(13):2719–2722.

    CAS  PubMed  Google Scholar 

  17. Oshima H, Oshima M, Kobayashi M et al. Morphological and molecular processes of polyp formation in Apc (delta716) knockout mice. Cancer Res 1997; 57(9):1644–1649.

    CAS  PubMed  Google Scholar 

  18. Nathke IS, Adams CL, Polakis P et al. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996; 134(1):165–179.

    Article  CAS  PubMed  Google Scholar 

  19. Langford KJ, Lee T, Askham JM et al. Adenomatous polyposis coli localization is both cell type and cell context dependent. Cell Motil Cytoskeleton 2006; 63(8):483–492.

    Article  CAS  PubMed  Google Scholar 

  20. Neufeld KL, White RL. Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc Natl Acad Sci USA 1997; 94(7):3034–3039.

    Article  CAS  PubMed  Google Scholar 

  21. Fagman H, Larsson F, Arvidsson Y et al. Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 2003; 22(38):6013–6022.

    Article  CAS  PubMed  Google Scholar 

  22. Bienz M, Hamada F. Adenomatous polyposis coli proteins and cell adhesion. Curr Opin Cell Biol 2004; 16:528–235.

    Article  CAS  PubMed  Google Scholar 

  23. Mogensen MM, Tucker JB, Mackie JB et al. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parrallel arrays of microtubule bundles in highly polarized epithelial cells. J Cell Biol 2002; 157:1041–1048.

    Article  CAS  PubMed  Google Scholar 

  24. Yu X, Waltzer L, Bienz M. A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nat Cell Biol 1999; 1:144–151.

    Article  CAS  PubMed  Google Scholar 

  25. McCartney BM, Dierick HA et al. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol 1999; 146:1303–1318.

    Article  CAS  PubMed  Google Scholar 

  26. Senda T, Miyashiro I, Matsumine A et al. The tumor suppressor protein APC colocalizes with beta-catenin in the colon epithelial cells. Biochem Biophys Res Commun 1996; 223(2):329–334.

    Article  CAS  PubMed  Google Scholar 

  27. Miyashiro I, Senda T, Matsumine A et al. Subcellular localization of the APC protein: immunoelectron microscopic study of the association of the APC protein with catenin. Oncogene 1995; 11:89–96.

    CAS  PubMed  Google Scholar 

  28. Rubinfeld B, Souza B, Albert I et al. The APC protein and E-cadherin form similar but independent complexes with alpha-carenin, beta-catenin and plakoglobin. J Biol Chem 1995; 270(10):5549–5555.

    Article  CAS  PubMed  Google Scholar 

  29. Rosin-Arbesfeld R, Ihrke G, Bienz M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J 2001; 20(21):5929–5939.

    Article  CAS  PubMed  Google Scholar 

  30. Townsley FM, Bienz M. Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo. Curr Biol 2000; 10(21):1339–1348.

    Article  CAS  PubMed  Google Scholar 

  31. McCartney BM, McEwen DG, Grevengoed E et al. Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin. Nat Cell Biol 2001; 3(10):933–938.

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe T, Wang S, Noritake J et al. Interaction with IQGAP1 links APC to Rac1, Cdc42 and actin filaments during cell polarization and migration. Dev Cell 2004; 7(6):871–883.

    Article  CAS  PubMed  Google Scholar 

  33. Etienne-Manneville S, Hall A. Cdc42 regulates GSK3 and adenomatous polyposis coli (APC) to control cell polarity. Nature 2003; 421:753–756.

    Article  CAS  PubMed  Google Scholar 

  34. Wen Y, Eng CH, Schmoranzer J et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6(9):820–830.

    Article  CAS  PubMed  Google Scholar 

  35. Shi SH, Cheng T, Jan LY et al. APC and GSK-3beta are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 2004; 14(22):2025–2032.

    Article  CAS  PubMed  Google Scholar 

  36. Etienne-Manneville S, Manneville JB, Nicholls S et al. Cdc42 and Par6-PKCζ; regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 2005; 170:895–901.

    Article  CAS  PubMed  Google Scholar 

  37. Mimori-Kiyosue Y, Shiina N, Tsukita S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 2000; 10(14):865–868.

    Article  CAS  PubMed  Google Scholar 

  38. Smith KJ, Levy DB, Maupin P et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 1994; 54(14):3672–3675.

    CAS  PubMed  Google Scholar 

  39. Munemitsu S, Souza B, Muller O et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 1994; 54(14):3676–3681.

    CAS  PubMed  Google Scholar 

  40. Su LK, Burrel M, Hill DE et al. APC binds to the novel protein EB1. Cancer Res 1995; 55:2972–2977.

    CAS  PubMed  Google Scholar 

  41. Askham JM, Moncur P, Markham AF et al. Regulation and function of the interaction between the APC tumour suppressor protein and EB1. Oncogene 2000; 19(15):1950–1958.

    Article  CAS  PubMed  Google Scholar 

  42. Barth AI, Siemers KA, Nelson WJ. Dissecting interactions between EB1, micro tubules and APC in cortical clusters at the plasma membrane. J Cell Sci 2002; 115(Pt 8):1583–1590.

    CAS  PubMed  Google Scholar 

  43. Jimbo T, Kawasaki Y, Koyama R et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 2002; 4(4):323–327.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou FQ, Zhou J, Dedhar S et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 2004; 42(6):897–912.

    Article  CAS  PubMed  Google Scholar 

  45. Cui H, Dong M, Sadhu DN et al. Suppression of kinesin expression disrupts adenomatous polyposis coli (APC) localization and affects beta-catenin turnover in young adult mouse colon (YAMC) epithelial cells. Exp Cell Res 2002; 280(1):12–23.

    Article  CAS  PubMed  Google Scholar 

  46. Wen Y. EB1 and APC bind to mDia to stabilize micro tubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6:820–830.

    Article  CAS  PubMed  Google Scholar 

  47. Rubinfeld B, Albert I, Porfiri E et al. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996; 272:1023–1026.

    Article  CAS  PubMed  Google Scholar 

  48. Gartner A, Huang X, Hall A. Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK-3beta) independently of Akt/PKB serine phosphorylation. J Cell Sci 2006; 119(Pt 19):3927–3934.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma M, Leung L, Brocardo M et al. Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem 2006; 281(25):17140–49.

    Article  CAS  PubMed  Google Scholar 

  50. Zumbrunn J, Kinoshita K, Hyman AA et al. Binding of the adenomatous polyposis coli protein to micro tubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 2001; 11:44–49.

    Article  CAS  PubMed  Google Scholar 

  51. Ha NC, Tonozuka T, Stamos JL et al. Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell 2004; 15(4):511–521.

    Article  CAS  PubMed  Google Scholar 

  52. Birchmeier W, Hulsken J, Behrens J. Adherens junction proteins in tumour progression. Cancer Surv 1995; 24:129–140.

    CAS  PubMed  Google Scholar 

  53. McCartney BM, Price MH, Webb RLH et al. Testing hypotheses for the functions of APC family proteins using null and truncation alleles in Drosophila. Development 2006; 133(12):2407–2418.

    Article  CAS  PubMed  Google Scholar 

  54. Hulsken J, Behrens J, Birchmeier W. Tumor-suppressor gene products in cell contacts: the cadherin-APC-armadillo connection. Curr Opin Cell Biol 1994; 6(5):711–716.

    Article  CAS  PubMed  Google Scholar 

  55. Barth AI, Pollack AL, Altschuler Y et al. NH2-terminal deletion of beta-catenin results in stable co-localization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion. J Cell Biol 1997; 136(3):693–706.

    Article  CAS  PubMed  Google Scholar 

  56. Klingelhofer J, Troyanovsky RB, Laur OY et al. Exchange of catenins in cadherin-catenin complex. Oncogene 2003; 22(8):1181–1188.

    Article  PubMed  Google Scholar 

  57. Faux MC, Ross JL, Meeker C et al. Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci 2004; 117(Pt 3):427–439.

    CAS  PubMed  Google Scholar 

  58. Deka J, Kuhlmann J, Muller O. A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau. Eur J Biochem 1998; 253(3):591–597.

    Article  CAS  PubMed  Google Scholar 

  59. Kita K, Wittmann T, Nathke IS et al. Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol Biol Cell 2006; 17(5):2331–2345.

    Article  CAS  PubMed  Google Scholar 

  60. Nakamura M, Zhou XZ, Lu KP. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001; 11:1062-1067.

    Google Scholar 

  61. Hayashi I, Wilde A, Mal TK et al. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol Cell 2005; 19(4):449–460.

    Article  CAS  PubMed  Google Scholar 

  62. Banks JD, Heald R. Adenomatous polyposis coli associates with the microtubule-destabilizing protein XMCAK. Curr Biol 2004; 14(22):2033–2038.

    Article  CAS  PubMed  Google Scholar 

  63. Takamori N, Shimomura A, Senda T. Microtubule-bundling activity of APC is stimulated by interaction with PSD-95. Neurosci Lett 2006; 403(1–2):68–72.

    Article  CAS  PubMed  Google Scholar 

  64. Kroboth K, Newton IP, Kita K et al. Lack of adenomatous polyposis coli protein correlateswith a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell 2006; 18(3):910–918.

    Article  PubMed  Google Scholar 

  65. Votin V, Nelson WJ, Barth AI. Neurite outgrowth involves adenomatous polyposis coli protein and bera-catenin. J Cell Sci 2005; 118(Pt 24):5699–5708.

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura M, Mishima H, Nishida T et al. Requirement of microtubule assembly for initiation of EGF-stimulated corneal epithelial migration. Jpn J Ophthalmol 1991; 35(4):377–385.

    CAS  PubMed  Google Scholar 

  67. Rosen EM, Meromsky L, Goldberg I et al. Studies on the mechanism of scatter factor. Effects of agents that modulate intracellular signal transduction, macromolecule synthesis and cytoskeleton assembly. J Cell Sci 1990; 96(Pt 4):639–649.

    CAS  PubMed  Google Scholar 

  68. Gipson IK, Westcott MJ, Brooksby NG. Effects of cytochalasins Band D and colchicine on migration of the corneal epithelium. Invest Ophthalmol Vis Sci 1982; 22(5):633–642.

    CAS  PubMed  Google Scholar 

  69. Kawasaki Y, Senda T, Ishidate T et al. Asef a link between the tumor suppressor APC and G-protein signaling. Science 2000; 289(5482):1194–1197.

    Article  CAS  PubMed  Google Scholar 

  70. Kawasaki Y, Sato R, Akiyama T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 2003; 5(3):211–215.

    Article  CAS  PubMed  Google Scholar 

  71. Le Clainche C, Schlaepfer D, Ferrari A et al. IQGAP1 stimulates actin assembly through the N-WASP-ARP2/3 pathway. J Biol Chem 2007; 282(1):426–435.

    Article  PubMed  Google Scholar 

  72. Kroboth K, Newton IP, Katsuhiro K et al. Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Mol Biol Cell 2007; 18 (3):910–918.

    Google Scholar 

  73. Etienne-Manneville S. Actin and microtubules in cell motility: which one is in control? Traffic 2004; 5:470–477.

    Article  CAS  PubMed  Google Scholar 

  74. Manneville JB, Etienne-Manneville S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol Cell 2006; 98(9):557–565.

    Article  CAS  PubMed  Google Scholar 

  75. Reilein A, Nelson WJ. APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol 2005; 7(5):463–473.

    Article  CAS  PubMed  Google Scholar 

  76. Fukata M, Watanabe T, Noritake J et al. Racl and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 2002; 109(7):873–885.

    Article  CAS  PubMed  Google Scholar 

  77. Matsumine A, Ogai A, Senda T et al. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 1996; 272(5264):1020–1023.

    Article  CAS  PubMed  Google Scholar 

  78. Iizuka-Kogo A, Shimomura A, Senda T. Colocalization of APC and DLG at the tip of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochem Cell Biol 2005; 123(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  79. Etienne-Manneville S, Hall A. Integrin-mediated Cdc42 activation controls cell polarity in migrating astrocytes through PKCζ. Cell 2001; 106:489–498.

    Article  CAS  PubMed  Google Scholar 

  80. Palazzo AF, Cook TA, Alberts AS et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 2001; 3:723–729.

    Article  CAS  PubMed  Google Scholar 

  81. Berrueta L, Tirnauer JS, Schuyler SC et al. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr Biol 1999; 9(8):425–428.

    Article  CAS  PubMed  Google Scholar 

  82. Komarova Y, Lansbergen G, Galjart N et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol Biol Cell 2005; 16(11):5334–5345.

    Article  CAS  PubMed  Google Scholar 

  83. Akhmanova A, Hoogenraad CC, Drabek K et al. CLASPs are Clip-115 and-170 associated proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 2001; 104:923–935.

    Article  CAS  PubMed  Google Scholar 

  84. Vaughan KT, Tynan SH, Faulkner NE et al. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J Cell Sci 1999; 112(Pt 10):1437–1447.

    CAS  PubMed  Google Scholar 

  85. Haraguchi K, Satoh K, Yanai H et al. The hDLG-associated protein DAP interacts with dynein light chain and neuronal nitric oxide synthase. Genes Cells 2000; 5(11):905–911.

    Article  CAS  PubMed  Google Scholar 

  86. Izumi Y, Hirose T, Tarnai Y et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 1998; 143(1):95–106.

    Article  CAS  PubMed  Google Scholar 

  87. Rolls MM, Albertson R, Shih HP et al. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 2003; 163(5):1089–1098.

    Article  CAS  PubMed  Google Scholar 

  88. Ebnet K, Suzuki A, Horikoshi Y et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 2001; 20:3738–3748.

    Article  CAS  PubMed  Google Scholar 

  89. Shi SH, Jan LY, Jan YN. Hippocampal neuronal polarity specified by spacially localized mPar3/mPar6 and PI3-Kinase activity. Cell 2003; 112:63–75.

    Article  CAS  PubMed  Google Scholar 

  90. Takizawa S, Nagasaka K, Nakagawa S et al. Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes Cells 2006; 11(4):453–464.

    Article  CAS  PubMed  Google Scholar 

  91. Humbert P, Russell S, Richardson H. Dlg, Scribble and lgl in cell polarity, cell proliferation and cancer. Bioessays 2003; 25(6):542–553.

    Article  CAS  PubMed  Google Scholar 

  92. Osmani N, Vitale N, Borg JP et al. Scrib controls Cdc42 localization and activity to promote cell polarization during astrocyte migration. Curr Biol 2006; 16(24):2395–2405.

    Article  CAS  PubMed  Google Scholar 

  93. Dow LE, Kauffman JS, Caddy J et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 2007; 26:2272–2282.

    Article  CAS  PubMed  Google Scholar 

  94. Gardiol D, Zacchi A, Petrera F et al. Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119(6):1285–1290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Etienne-Manneville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Etienne-Manneville, S. (2009). APC in Cell Migration. In: Näthke, I.S., McCartney, B.M. (eds) APC Proteins. Advances in Experimental Medicine and Biology, vol 656. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1145-2_3

Download citation

Publish with us

Policies and ethics