Advertisement

APC Proteins pp 119-127 | Cite as

Extra-Colonic Manifestations of Familial Adenomatous Polyposis Coli

  • Alison H. Trainer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 656)

Abstract

The most important clinical manifestation of Familial Adenomatous Polyposis (FAP) is a profuse polyposis predisposing to colorectal cancer. This clinical picture emphasises the fundamental cellular role of APC in colorectal tumorigenesis. As prophylactic colorectal surgery has significantly reduced the mortality associated with this disorder, other less penetrant signs and symptoms of the condition are becoming more clinically relevant. Highlighting these problems will help improve the quality oflife for patients with FAP and may have the additional benefit of shedding new light on other possible functions of the APC protein.

Keywords

Retinal Pigment Epithelium Papillary Thyroid Carcinoma Familial Adenomatous Polyposis Adenomatous Polyposis Coli Desmoid Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nugent KP, Spigelman AD, Phillips RK. Life expectancy after colectomy and ileorectal anastomosis for familial adenomatous polyposis. Dis Colon Rectum 1993; 36:1059–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Arvanitis ML, Jagelman DG, Fazio VW et al. Mortality in patients with familial adenomatous polyposis. Dis Colon Rectum 1990; 33:639–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Bertario L, Presciuttini S, Sala P et al. Causes of death and postsurgical survival in familial adenomatous polyposis: results from the italian registry. Italian registry of familial polyposis writing committee. Semin Surg Oncol 1994; 10:225–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Spirio L, Calin G, Olschwang S et al. Alleles of the APC gene: an attenuated form of familial polyposis. Cell 1993; 75:951–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Soravia C, Berk T, Madlensky L et al. Genotype-phenotype correlations in attenuated adenomatous polyposis coli. Am J Hum Genet 1998; 62:1290–301.CrossRefPubMedGoogle Scholar
  6. 6.
    Moisio AL, Jarvinen H, Peltomaki P. Genetic and clinical characterisation of familial adenomatous polyposis: a population based study. Gut 2002; 50:845–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Devic A, Bussy MM. Un cas de polypose adenomateuze generalisee autour de l’intestine. Arch Mal Appar Dig 1912; 6:278–299.Google Scholar
  8. 8.
    Gardner EJ, Richards RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet 1953; 5:139–47.PubMedGoogle Scholar
  9. 9.
    Klemmer S, Pascoe L, DeCosse J. Occurrence of desmoids in patients with familial adenomatous polyposis of the colon. Am J Med Genet 1987; 28:385–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Sagar PM, Moslein G, Dozois RR. Management of desmoid tumors in patients after ileal pouch-anal anastomosis for familial adenomatous polyposis. Dis Colon Rectum 1998; 41:1350–5; discussion 1355-6.CrossRefPubMedGoogle Scholar
  11. 11.
    Bertario L, Russo A, Sala P et al. Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer 2001; 95:102–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Scott RJ, Froggatt NJ, Trembath RC et al. Familial infiltrative fibromatosis (desmoid tumours) (MIMI35290) caused by a recurrent 3′ APC gene mutation. Hum Mol Genet 1996; 5:1921–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Eccles D, Harvey J, Bateman A et al. A novel 3′ mutation in the APC gene in a family presenting with a desmoid tumour. J Med Genet 2001; 38:861–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Eccles DM, Van Der Luijt R, Breukel C et al. Hereditary desmoid disease due to a frameshift mutation at codon 1924 of the APC gene. Am J Hum Genet 1996; 59:1193–201.PubMedGoogle Scholar
  15. 15.
    Couture J, Mitri A, Lagace R et al. A germline mutation at the extreme 3’ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of beta-catenin in the desmoid tumor. Clin Genet 2000; 57:205–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Latchford A,. Volikos E, Johnson V et al. APC mutations in FAP-associated desmoid tumours are nonrandom but not ‘just right’. Hum Mol Genet 2007; 16:78–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Miyaki M, Yamaguchi T, Iijima T et al. Difference in characteristics of APC mutations between colonic and extracolonic tumors of FAP patients: variations with phenotype. Int J Cancer 2008; 122:2491–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Alman BA, Li C, Pajerski ME et al. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997; 151:329–34.PubMedGoogle Scholar
  19. 19.
    Shitoh K, Konishi F, Iijima T et al. A novel case of a sporadic desmoid tumour with mutation of the beta catenin gene. J Clin Pathol 1999; 52:695–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Giarola M, Wells D, Mondini P et al. Mutations of adenomatous polyposis coli (APC) gene are uncommon in sporadic desmoid tumours. Br J Cancer 1998; 78:582–7.PubMedGoogle Scholar
  21. 21.
    Gega M, Yanagi H, Yoshikawa R et al. Successful chemotherapeutic modality of doxorubicin plus dacarbazine for the treatment of desmoid tumors in association with familial adenomatous polyposis. J Clin Oncol 2006; 24:102–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Izes JK, Zinman LN, Larsen CR. Regression of large pelvic desmoid tumor by tamoxifen and sulindac. Urology 1996; 47:756–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Maroy B. Desmoid tumor sensitive to tamoxifen. Presse Med 1997; 26, 1520–2.PubMedGoogle Scholar
  24. 24.
    Buettner H. Congenital hypertrophy of the retinal pigment epithelium. Am J Ophthalmol 1975; 79:177–89.PubMedGoogle Scholar
  25. 25.
    Shields JA, Shields CL, Shah PG et al. Lack of association among typical congenital hypertrophy of the retinal pigment epithelium, adenomatous polyposis and gardner syndrome. Ophthalmology 1992; 99:1709–13.PubMedGoogle Scholar
  26. 26.
    Blair NP, Trempe CL. Hypertrophy of the retinal pigment epithelium associated with Gardner’s syndrome. Am J Ophthalmol 1980; 90:661–7.PubMedGoogle Scholar
  27. 27.
    Tourino R, Conde-Freire R, Cabezas-Agricola JM et al. Value of the congenital hypertrophy of the retinal pigment epithelium in the diagnosis of familial adenomatous polyposis. Int Ophthalmol 2004; 25:101–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmidt D, Jung CE, Wolff G. Changes in the retinal pigment epithelium close to retinal vessels in familial adenomatous polyposis. Graefes Arch Clin Exp Ophthalmol 1994; 232:96–102.CrossRefPubMedGoogle Scholar
  29. 29.
    Tourino R, Rodriguez-Ares MT, Lopez-Valladares MJ et al. Fluorescein angiographic features of the congenital hypertrophy of the retinal pigment epithelium in the familial adenomatous polyposis. Int Ophthalmol 2005; 26:59–65.CrossRefPubMedGoogle Scholar
  30. 30.
    Hennessy MP, Collins F, Coroneo MT. The distinction between multiple retinal pigment epithelial hamartomata (MRPEH) in familial adenomatous polyposis (FAP) and congenital hypertrophy of the retinal pigment epithelium (CHRPE). Aust N Z J Ophthalmol 1993; 21:275–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Enomoto M, Konishi M, Iwama T et al. The relationship between frequencies of extracolonic manifestations and the position ofAPC germline mutation in patients with familial adenomatous polyposis. Jpn J Clin Oncol 2000; 30:82–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Giardiello FM, Petersen GM, Pianradosi S et al. APC gene mutations and extraintesrinal phenotype of familial adenomatous polyposis. Gut 1997; 40:521–5.PubMedGoogle Scholar
  33. 33.
    Ficari F, Cama A, Valanzano R et al. APC gene mutations and colorectal adenomatosis in familial adenomatous polyposis. Br J Cancer 2000; 82:348–53.CrossRefPubMedGoogle Scholar
  34. 34.
    Fader M, Kline SN, Spatz SS et al. Gardner’s syndrome (intestinal polyposis, osteomas, sebaceous cysts) and a new dental discovery. Oral Surg Oral Med Oral Pathol 1962; 15:153–72.CrossRefPubMedGoogle Scholar
  35. 35.
    Wolf J, Jarvinen HJ, Hietanen J. Gardner’s dento-maxillary stigmas in patients with familial adenomatosis coli. Br I Oral Maxillofac Surg 1986; 24:410–6.CrossRefGoogle Scholar
  36. 36.
    Sondergaard JO, Bulow S, Jarvinen H et al. Dental anomalies in familial adenomatous polyposis coli. Acta Odontol Scand 1987; 45:61–3.CrossRefPubMedGoogle Scholar
  37. 37.
    D’Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs 2007; 186:60–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu F, Chu EY, Watt B et al. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 2008; 313:210–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Bei M, Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 1998; 125:4325–33.PubMedGoogle Scholar
  40. 40.
    Kubo K, Miyatani H, Takenoshita Y et al. Widespread radiopacity of jaw bones in familial adenomatosis coli. J Craniomaxillofac Surg 1989; 17:350–3.PubMedGoogle Scholar
  41. 41.
    Davies DR, Armstrong JG, Thakker N et al. Severe Gardner syndrome in families with mutations restricted to a specific region of the APC gene. Am J Hum Genet 1995; 57:1151–8.PubMedGoogle Scholar
  42. 42.
    Takeuchi T, Takenoshita Y, Kubo K et al. Natural course of jaw lesions in patients with familial adenomatosis coli (Gardner’s syndrome). Int J Oral Maxillofac Surg 1993; 22:226–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Utsunomiya J, Nakamura T. The occult osteomatous changes in the mandible in patients with familial polyposis coli. Br J Surg 1975; 62:45–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Thakker N, Davies R, Horner K et al. The dental phenotype in familial adenomatous polyposis: diagnostic application of a weighted scoring system for changes on dental panoramic radiographs. J Med Genet 1995; 32:458–64.CrossRefPubMedGoogle Scholar
  45. 45.
    Ullbro C, AIm T, Ericson S et al. Occult radiopaque jaw lesions in familial adenomatous polyposis. Swed Dent J 1990; 14:201–12.PubMedGoogle Scholar
  46. 46.
    Yuasa K, Yonetsu K, Kanda S et al. Computed tomography of the jaws in familial adenomatosis coli. Oral Surg Oral Med Oral Pathol 1993; 76:251–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Halling F, Merten HA, Lepsien G et al. Clinical and radiological findings in Gardner’s syndrome: a case report and follow-up study. Dentomaxillofac Radiol 1992; 21:93–8.PubMedGoogle Scholar
  48. 48.
    Attard TM, Giglio P, Koppula S et al. Brain tumors in individuals with familial adenomatous polyposis: a cancer registry experience and pooled case report analysis. Cancer 2007; 109:761–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Hamilton SR, Liu B, Parsons RE et al. The molecular basis of Turcot’s syndrome. N Engl J Med 1995; 332:839–47.CrossRefPubMedGoogle Scholar
  50. 50.
    Mori T, Nagase H, Horii A et al. Germ-line and somatic mutations of the APC gene in patients with turcot syndrome and analysis of APC mutations in brain tumors. Genes Chromosomes Cancer 1994; 9:168–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Huang H, Mahler-Araujo BM, Sankila A et al. APC mutations in sporadic medulloblastomas. Am J Pathol 2000; 156:433–7.PubMedGoogle Scholar
  52. 52.
    Yong WH, Raffel C, von Deimling A et al. The APC gene in Turcot’s syndrome. N Engl J Med 1995; 333:524.CrossRefPubMedGoogle Scholar
  53. 53.
    Dahmen RP, Koch A, Denkhaus D et al. Deletions ofAXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 2001; 61:7039–43.PubMedGoogle Scholar
  54. 54.
    Baeza N, Masuoka J, Kleihues P et al. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 2003; 22:632–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Zurawel RH, Chiappa SA, Allen C et al. Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 1998; 58:896–9.PubMedGoogle Scholar
  56. 56.
    Giardiello FM, Petersen GM, Brensinger JD et al. Hepatoblastoma and APC gene mutation in familial adenomatous polyposis. Gut 1996; 39:867–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Hirschman BA, Pollock BH, Tomlinson GE. The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatr 2005; 147:263–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Cetta F, Montalto G, Petracci M. Hepatoblastoma and APC gene mutation in familial adenomatous polyposis. Gut 1997; 41:417.CrossRefPubMedGoogle Scholar
  59. 59.
    Takayasu H, Horie H, Hiyama E et al. Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clin Cancer Res 2001; 7:901–8.PubMedGoogle Scholar
  60. 60.
    Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol 2002; 39:530–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Kurahashi H, Takami K, Oue T et al. Biallelic inactivation of the APC gene in hepatoblastoma. Cancer Res 1995; 55:5007–11.PubMedGoogle Scholar
  62. 62.
    Inukai T, Furuuchi K, Sugita K et al. Nuclear accumulation of beta-catenin without an additional somatic mutation in coding region of the APC gene in hepatoblastoma from a familial adenomatous polyposis patient. Oncol Rep 2004; 11:121–6.PubMedGoogle Scholar
  63. 63.
    Oda H, Imai Y, Nakatsuru Y et al. Somatic mutations of the APC gene in sporadic hepatoblastomas. Cancer Res 1996; 56:3320–3.PubMedGoogle Scholar
  64. 64.
    Truta B, Allen BA, Conrad PG et al. Genotype and phenotype of patients with both familial adenomatous polyposis and thyroid carcinoma. Fam Cancer 2003; 2:95–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Soravia C, Sugg SL, Berk T et al. Familial adenomatous polyposis-associated thyroid cancer: a clinical, pathological and molecular genetics study. Am J Pathol 1999; 154:127–35.PubMedGoogle Scholar
  66. 66.
    Cetta F, Curia MC, Montalto G et al. Thyroid carcinoma usually occurs in patients with familial adenomatous polyposis in the absence of biallelic inactivation of the adenomatous polyposis coli gene. J Clin Endocrinol Metab 2001; 86:427–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Xu B, Yoshimoto K, Miyauchi A et al. Cribriform-morular variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the beta-eaten in gene. J Pathol 2003; 199:58–67.CrossRefPubMedGoogle Scholar
  68. 68.
    Cetta F, Chiappetta G, Melillo RM et al. The ret/ptcl oncogene is activated in familial adenomatous polyposis-associated thyroid papillary carcinomas. J Clin Endocrinol Metab 1998; 83:1003–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Cetta F, Toti P, Petracci M et al. Thyroid carcinoma associated with familial adenomatous polyposis. Histopathology 1997; 31:231–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 2001; 8:345–54.CrossRefPubMedGoogle Scholar
  71. 71.
    Hodgson SV, Coonar AS, Hanson PJ et al. Two cases of 5q deletions in patients with familial adenomatous polyposis: possible link with Caroli’s disease. J Med Genet 1993; 30:369–75.CrossRefPubMedGoogle Scholar
  72. 72.
    Calin G, Wijnen J, Van Der Klift H et al. Marfan-like habitus and familial adenomatous polyposis in two unrelated males: a significant association? Eur J Hum Genet 1999; 7:609–14.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Prince of Wales Clinical School, Faculty of MedicineUniversity of New South WalesAustralia

Personalised recommendations