APC and β-Catenin Degradation

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 656)


The adenomatous polyposis coli (APC) gene encodes a tumor suppressor that is mutated in familial adenomatous polyposis (FAP) colon cancer as well as the large majority of sporadic colorectal cancers (reviewed in ref 1, Chapter by Sansom, Kwong and Dove). Most of the mutations in APC associated with increased incidence of cancer generate a truncated form of APC.2, 3 While many studies have implicated the APC protein in the regulation of the cytoskeleton (reviewed in ref 4, Chapter by Morrison, Caldwell and Kaplan et al. ), there is also compelling evidence that APC is a key component of Wnt/β-catenin signaling (reviewed in refs. 3, 5). Consistent with this, loss of APC1 and APC2 genes in Drosophila result in elevated Wnt/β-catenin signaling.68 Mutations of APC in mice or zebrafish also increase the susceptibility of these animals to developing colorectal cancer with elevation of Wnt/β-catenin signaling in the tumors.9,10 In this chapter, we will focus on the role of APC as a negative regulator of the Wnt/β-catenin pathway.


Adenomatous Polyposis Coli Casein Kinase Nuclear Export Signal Adenomarous Polyposis Coli Gene Destruction Complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gaspar C, Fodde R. APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol 2004; 48:377–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev 1999; 9:15–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Polakis P. Wnt Signaling and cancer. Genes Dev 2000; 14:1837–51.PubMedGoogle Scholar
  4. 4.
    Nathke IS. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol 2004; 20:337–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20:781–810.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahmed Y, Nouri A, Wieschaus E. Drosophila Apc1 and Apc2 regulate Wingless transduction throughout development. Development 2002; 129:1751–62.PubMedGoogle Scholar
  7. 7.
    Akong K, Grevengoed EE, Price MH et al. Drosophila APC2 and APC1 play overlapping roles in wingless signaling in the embryo and imaginal discs. Dev Biol 2002; 250:91–100.PubMedCrossRefGoogle Scholar
  8. 8.
    McCartney BM, Price MH, Webb RL et al. Testing hypotheses for the functions of APC family proteins using null and truncation alleles in Drosophila. Development 2006; 133:2407–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Haramis AP, Hurlstone A, van der Velden Y et al. Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 2006; 7:444–9.PubMedGoogle Scholar
  10. 10.
    Taketo MM. Mouse models of gastrointestinal tumors. Cancer Sci 2006; 97:355–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Cadigan KM, Liu TI. Wnt signaling: complexity at the surface. J Cell Sci 2006; 119:395–402.PubMedCrossRefGoogle Scholar
  12. 12.
    Parker DS, Blauwkamp T, Cadigan KM. Wnt/β-catenin-mediated transcriptional regulation. In: Wnt Signaling in Embryonic Development, Sokol S., ed. Advances in Developmental Biology, Wassarman PM, ed. Vol. 17, pp. 1–61. San Diego: Elsevier, 2007.CrossRefGoogle Scholar
  13. 13.
    Rubinfeld B, Souza B, Albert I et al. Association of the APC gene product with beta-catenin. Science 1993; 262: 1731–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Su LK, Vogelstein B, Kinzler KW: Association of the APC tumor suppressor protein with catenins. Science 1993; 262:1734–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Munemitsu S, Albert I, Souza B et al. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci USA 1995; 92:3046–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Albuquerque C, Breukel C, van der Luijt R et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-carenin signaling cascade. Hum Mol Genet 2002; 11:1549–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Peifer M, Sweeton D, Casey M, Wieschaus E. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 1994; 120:369–80.PubMedGoogle Scholar
  18. 18.
    Zeng L, Fagotto F, Zhang T et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 1997; 90:181–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamada F, Tomoyasu Y, Takatsu Y et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 1999; 283:1739–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Tolwinski NS, Wehrli M, Rives A et al. Wg/Wnt signal can be transmitted through arrow /LRP5, 6 and Axin independently of Zw3/Gsk3beta activity. Dev Cell 2003; 4:407–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Salic A, Lee E, Mayer L et al. Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 2000; 5:523–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Behrens J, Jerchow BA, Wurtele M et al. Functional interaction of an axin homolog, conductin, with beta-carenin, APC and GSK3beta. Science 1998; 280:596–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hart MJ, de los Santos R, Albert IN et al. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol 1998; 8:573–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Itoh K, Krupnik VE, Sokol SY. Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol 1998; 8:591–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Nakamura T, Hamada F, Ishidate T et al. Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes Cells 1998; 3:395–403.PubMedCrossRefGoogle Scholar
  26. 26.
    Hinoi T, Yamamoto H, Kishida M et al. Complex formation of adenomatous polyposis coli gene product and axin facilitates glycogen synthase kinase-3 beta-dependent phosphorylation of beta-catenin and down-regulates beta-catenin. J Biol Chem 2000; 275:34399–406.PubMedCrossRefGoogle Scholar
  27. 27.
    Rubinfeld B, Albert I, Porfiri E et al. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 1996; 272:1023–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Yost C, Torres M, Miller JR et al. The axis-inducing activity, stability and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10:1443–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda S, Kishida S, Yamamoto H et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 1998; 17:1371–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Yamamoto H, Kishida S, Uochi T et al. Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 1998; 18:2867–75.PubMedGoogle Scholar
  31. 31.
    Dajani R, Fraser E, Roe SM et al. Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J 2003; 22:494–501.PubMedCrossRefGoogle Scholar
  32. 32.
    Amit S, Hatzubai A, Birman Y et al. Axin-rnediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 2002; 16:1066–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu C, Li Y, Semenov M et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108:837–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Yanagawa S, Matsuda Y, Lee JS et al. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J 2002; 21:1733–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Gao ZH, Seeling JM, Hill V et al. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci USA 2002; 99:1182–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang L, Jia J, Wang B et al. Regulation of wingless signaling by the CKI family in Drosophila limb development. Dev Biol 2006; 299:221–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Major MB, Camp ND, Berndt JD et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 2007; 316:1043–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Schwarz-Romond T, Asbrand C, Bakkers J et al. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes Dev 2002; 16:2073–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Hart M, Concordet JP, Lassot I et al. The F-box protein beta-TrCP associates with phosphorylated bera-catenin and regulates its activity in the cell. Curr Biol 1999; 9:207–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Kitagawa M, Hatakeyama S, Shirane M et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 1999; 18:2401–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Ha NC, Tonozuka T, Stamos JL et al. Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell 2004; 15:511–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Rubinfeld B, Souza B, Albert I et al. The APC protein and E-cadherin form similar but independent complexes with alpha-catenin, beta-catenin and plakoglobin. J Biol Chem 1995; 270: 5549–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakagawa H, Murata Y, Koyama K et al. Identification of a brain-specificAPC homologue, APCL and its interaction with bera-catenin. Cancer Res 1998; 58:5176–81.PubMedGoogle Scholar
  44. 44.
    McCartney BM, Dierick HA, Kirkpatrick C et al. Drosophila APC2 is a cytoskeletally-associared protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol 1999; 146:1303–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Spink KE, Polakis P, Weis WI. Structural basis of the Axin-adenomatous polyposis coli interaction. EMBO J 2000; 19:2270–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Sadot E, Conacci-Sorrell M, Zhurinsky J et al. Regulation of S33/S37 phosphorylated beta-catenin in normal and transformed cells. J Cell Sci 2002; 115:2771–80.PubMedGoogle Scholar
  47. 47.
    Yang J, Zhang W, Evans PM et al. Adenomatous polyposiscoli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 2006; 281:17751–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu J, Xing Y, Hinds TR et al. The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol 2006; 360:133–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Smits R, Kielman MF, Breukel C et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 1999; 13:1309–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Kielman MF, Rindapaa M, Gaspar C et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-carenin signaling. Nat Genet 2002; 32:594–605.PubMedCrossRefGoogle Scholar
  51. 51.
    Bhattacharya G, Boman BM. Phosphorylation of the adenomatous polyposis coli protein and its possible regulatory effects in cells. Biochem Biophys Res Commun 1995; 208:103–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Rubinfeld B, Tice DA, Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase lepsilon. J Biol Chem 2001; 276:39037–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Xing Y, Clements WK, Le Trong I et al. Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol Cell 2004; 15:523–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Choi HJ, Huber AH, Weis WI. Thermodynamics of beta-catenin-ligand interactions: the roles of the N-and C-terminal tails in modulating binding affinity. J Biol Chem 2006; 281:1027–38.PubMedCrossRefGoogle Scholar
  55. 55.
    Li L, Yuan H, Weaver CD et al. Axin and Frat I interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J 1999; 18:4233–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu X, Rubin JS, Kimmel AR. Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol 2005; 15:1989–97.PubMedCrossRefGoogle Scholar
  57. 57.
    Hsu W, Zeng L, Costantini F. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J Biol Chem 1999; 274:3439–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Ikeda S, Kishida M, Matsuura Y et al. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 2000; 19:537–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Seeling JM, Miller JR, Gil R et al. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 1999; 283:2089–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamamoto H, Hinoi T, Michiue T et al. Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A. J Biol Chem 2001; 276:26875–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Ratcliffe MJ, Itoh K, Sokol SY. A positive role for the PP2A catalytic subunit in Wnt signal transduction. J Biol Chem 2000; 275:35680–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Li X, Yost HJ, Virshup DM et al. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J 2001; 20:4122–31.PubMedCrossRefGoogle Scholar
  63. 63.
    McCright B, Virshup DM. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 1995; 270:26123–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang J, Wu J, Tan C et al. PP2A: B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 2003; 130:5569–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Kishida M, Koyama S, Kishida S et al. Axin prevents Wnt-3a-induced accumulation of beta-catenin. Oncogene 1999a; 18:979–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Reinacher-Schick A, Gumbiner BM. Apical membrane localization of the adenomatous polyposis coli tumor suppressor protein and subcellular distribution of the beta-catenin destruction complex in polarized epithelial cells. J Cell Biol 2001; 152:491–502.PubMedCrossRefGoogle Scholar
  67. 67.
    Penman GA, Leung L, Nathke IS. The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J Cell Sci 2005; 118:4741–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Brocardo M, Nathke IS, Henderson BR. Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 2005; 6:184–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2000; 2:653–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Neufeld KL, Nix DA, Bogerd H et al. Adenomatous polyposis coli protein contains two nuclear export signals and shuttles between the nucleus and cytoplasm. Proc Natl Acad Sci USA 2000a; 97:12085–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Rosin-Arbesfeld R, Townsley F, Bienz M. The APC tumour suppressor has a nuclear export function. Nature 2000; 406:1009–12.PubMedCrossRefGoogle Scholar
  72. 72.
    Rosin-Arbesfeld R, Cliffe A, Brabletz T et al. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J 2003; 22:1101–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang F, White RL, Neufeld KL. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc Natl Acad Sci USA 2000; 97:12577–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Sierra J, Yoshida T, Joazeiro CA et al. The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 2006; 20:586–600.PubMedCrossRefGoogle Scholar
  75. 75.
    Neufeld KL, Zhang F, Cullen BR et al. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 2000b; 1:519–23.PubMedGoogle Scholar
  76. 76.
    Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA 2004; 101:2882–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Wiechens N, Heinle K, Englmeier L et al. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt-beta-catenin Pathway. J Biol Chem 2004; 279:5263–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Tolwinski NS, Wieschaus E. Rethinking WNT signaling. Trends Genet 2004; 20:177–81.PubMedCrossRefGoogle Scholar
  79. 79.
    Yanagawa S, van Leeuwen F, Wodarz A et al. The disheveled protein is modified by Wingless signaling in Drosophila. Genes Dev 1995; 9:1087–97.PubMedCrossRefGoogle Scholar
  80. 80.
    Lee JS, Ishimoto A, Yanagawa S. Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway, J Biol Chem 1999; 274:21464–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA et al. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 2004; 24:4757–68.PubMedCrossRefGoogle Scholar
  82. 82.
    Kishida S, Yamamoto H, Hino S et al. DIX domains of Dvl and axin are necessary for protein interactions and their ability to regulate beta-catenin stability. Mol Cell Biol 1999b; 19:4414–22.PubMedGoogle Scholar
  83. 83.
    Hino S, Michiue T, Asashima M et al. Casein kinase I epsilon enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin, J Biol Chem 2003; 278: 14066–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Farr GH 3rd, Ferkey DM, Yost C et al. Interaction among GSK-3, GBP, axin and APC in Xenopus axis specification. J Cell Biol 2000; 148:691–702.PubMedCrossRefGoogle Scholar
  85. 85.
    Ferkey DM, D Kimelman. Glycogen synthase kinase-3 beta mutagenesis identifies a common binding domain for GBP and Axin. J Biol Chem 2002; 277:16147–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee E, Salic A, Kirschner MW. Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon. J Cell Biol 2001; 154:983–93.PubMedCrossRefGoogle Scholar
  87. 87.
    Yost C, Farr GH 3rd, Pierce SB et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 1998; 93:1031–41.PubMedCrossRefGoogle Scholar
  88. 88.
    van Amerongen R, Nawijn M, Franca-Koh J et al. Frat is dispensable for canonical Wnt signaling in mammals. Genes Dev 2005; 19:425–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Chou HY, Howng SL, Cheng TS et al. GSKIP is homologous to the Axin GSK3beta interaction domain and functions as a negative regulator of GSK3beta. Biochemistry 2006; 45:11379–89.PubMedCrossRefGoogle Scholar
  90. 90.
    Mao J, Wang J, Liu B et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 2001; 7:801–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 2003; 13:960–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Tarnai K, Zeng X, Liu C et al. A mechanism for Wnt coreceptor activation. Mol Cell 2004; 13:149–56.CrossRefGoogle Scholar
  93. 93.
    Davidson G, Wu W, Shen J et al. Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 2005; 438:867–72.PubMedCrossRefGoogle Scholar
  94. 94.
    Zeng X, Tarnai K, Doble B et al. A dual-kinase mechanism for Wnt coreceptor phosphorylation and activation. Nature 2005; 438:873–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen HJ, Lin CM, Lin CS et al. The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev 2006; 20:1933–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Yamamoto H, Kishida S, Kishida M et al. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem 1999; 274:10681–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 1999; 13: 1768–73.PubMedCrossRefGoogle Scholar
  98. 98.
    Luo W, Peterson A, Garcia BA et al. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 2007; 26:1511–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Papkoff J, Rubinfeld B, Schryver B et al. Wnt-1 regulates free pools of catenins and stabilizes APC-catenin complexes. Mol Cell Biol 1996; 16:2128–34.PubMedGoogle Scholar
  100. 100.
    Choi J, Park SY, Costantini F et al. Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J Biol Chem 2004; 279:49188–98.PubMedCrossRefGoogle Scholar
  101. 101.
    Vleminckx K, Wong E, Guger K et al. Adenornatous polyposis coli tumor suppressor protein has signaling activity in Xenopus laevis embryos resulting in the induction of an ectopic dorsoanterior axis. J Cell Biol 1997; 136:411–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Rocheleau CE, Downs WD, Lin R et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 1997; 90:707–16.PubMedCrossRefGoogle Scholar
  103. 103.
    Hoier EF, Mohler WA, Kim SK et al. The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migration and Hox gene expression. Genes Dev 2000; 14:874–86.PubMedGoogle Scholar
  104. 104.
    Gleason JE, Korswagen HC, Eisenmann DM. Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C. elegans vulval induction. Genes Dev 2002; 16:1281–90.PubMedCrossRefGoogle Scholar
  105. 105.
    Mizumoto K, Sawa H. Cortical beta-catenin and APC regulate asymmetric nuclear beta-catenin localization during asymmetric cell division in C. elegans. Dev Cell 2007; 12:287–99.PubMedCrossRefGoogle Scholar
  106. 106.
    Korswagen HC, Coudreuse DY, Betist MC et al. The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev 2002; 16:1291–302.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Cellular and Developmental Biology, Natural Science BuildingUniversity of MichiganAnn Arbor
  2. 2.Molecular, Cellular and Developmental Biology Natural Science BuildingUniversity of MichiganAnn ArborUSA

Personalised recommendations