Advertisement

Ribonuclease P pp 135-151 | Cite as

Challenges in RNase P Substrate Recognition: Considering the Biological Context

  • Michael Harris
  • Lindsay Yandek
Chapter
Part of the Protein Reviews book series (PRON, volume 10)

Abstract

Despite important advances in our understanding of the structure and function of RNase P, it can be argued that we still lack a comprehensive understanding of how the functional and biophysical properties of the enzyme are integrated into its biological function. In this Chapter, we consider recent progress in understanding the in vitro kinetics and thermodynamic properties of the enzyme in the context of its specific role in tRNA biosynthesis. In the process, we highlight several studies that point the way toward gaining an integrated perspective on RNase P substrate recognition in vitro and in vivo. Both explorations point out the potential gaps in our understanding of RNase P reaction kinetics and the substrate binding specificity that may serve as points of departure for achieving a comprehensive understanding of the function of this essential enzyme in biology.

Keywords

tRNA Gene Leader Sequence Enzyme Substrate Substrate Recognition Observe Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baird NJ, Fang XW et al (2007) Folding of a universal ribozyme: the ribonuclease P RNA. Q Rev Biophys 40(2):113–161PubMedGoogle Scholar
  2. Beebe JA, Kurz JC et al (1996) Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry 35(32):10493–10505CrossRefPubMedGoogle Scholar
  3. Brannvall M, Kikovska E et al (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372(5):1149–1164CrossRefPubMedGoogle Scholar
  4. Bremer H, Dennis P (2008) Feedback control of ribosome function in Escherichia coli. Biochimie 90(3):493–499CrossRefPubMedGoogle Scholar
  5. Buck AH, Dalby AB et al (2005a) Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 24(19):3360–3368CrossRefPubMedGoogle Scholar
  6. Buck AH, Kazantsev AV et al (2005b) Structural perspective on the activation of RNAse P RNA by protein. Nat Struct Mol Biol 12(11):958–964PubMedGoogle Scholar
  7. Christian EL, McPheeters DS et al (1998) Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking. Biochemistry 37(50):17618–17628CrossRefPubMedGoogle Scholar
  8. Christian EL, Zahler NH et al (2002) Analysis of substrate recognition by the ribonucleoprotein endonuclease RNase P. Methods 28(3):307–322CrossRefPubMedGoogle Scholar
  9. Cleland WW, Cook PF (2007) Enzyme Kinetics and Mechanism. Garland Publishers, London and New YorkGoogle Scholar
  10. Deutscher MP (2009) Maturation and degradation of ribosomal RNA in bacteria. Prog Mol Biol Transl Sci 85:369–391CrossRefPubMedGoogle Scholar
  11. Dittmar KA, Mobley EM et al (2004) Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol 337(1):31–47CrossRefPubMedGoogle Scholar
  12. Evans D, Marquez SM et al (2006) RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 31(6):333–341CrossRefPubMedGoogle Scholar
  13. Fahlman RP, Dale T et al (2004) Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol Cell 16(5):799–805CrossRefPubMedGoogle Scholar
  14. Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67:153–180CrossRefPubMedGoogle Scholar
  15. Fredrik Pettersson BM, Ardell DH et al (2005) The length of the 5′ leader of Escherichia coli tRNA precursors influences bacterial growth. J Mol Biol 351(1):9–15CrossRefPubMedGoogle Scholar
  16. Gardiner KJ, Marsh TL et al (1985) Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem 260(9):5415–5419PubMedGoogle Scholar
  17. Hansen A, Pfeiffer T et al (2001) Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis. Mol Microbiol 41(1):131–143CrossRefPubMedGoogle Scholar
  18. Herschlag D (1988) The role of induced fit and conformationla changes of enzymes in specificity and catalysis. Bioorg Chem 16:62–96CrossRefGoogle Scholar
  19. Hsieh J, Andrews AJ et al (2004) Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 73(1):79–89CrossRefPubMedGoogle Scholar
  20. Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151(3):389–409CrossRefPubMedGoogle Scholar
  21. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2(1):13–34PubMedGoogle Scholar
  22. Karbstein K, Tang KH et al (2004) A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect. RNA 10(11):1730–1739CrossRefPubMedGoogle Scholar
  23. Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4(10):729–740CrossRefPubMedGoogle Scholar
  24. Kikovska E, Brannvall M et al (2006) The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 359(3):572–584CrossRefPubMedGoogle Scholar
  25. Kirsebom LA (2007). RNase P RNA mediated cleavage: Substrate recognition and catalysis. BiochimieGoogle Scholar
  26. Kirsebom LA, Altman S (1989) Reaction in vitro of some mutants of RNase P with wild-type and temperature-sensitive substrates. J Mol Biol 207(4):837–840CrossRefPubMedGoogle Scholar
  27. Kirsebom LA, Trobro S (2009) RNase P RNA-mediated cleavage. IUBMB Life 61(3):189–200CrossRefPubMedGoogle Scholar
  28. Komine Y, Adachi T et al (1990) Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol 212(4):579–598CrossRefPubMedGoogle Scholar
  29. Kurland CG (1993) Major codon preference: theme and variations. Biochem Soc Trans 21(4):841–846PubMedGoogle Scholar
  30. LaGrandeur TE, Huttenhofer A et al (1994) Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 13(17):3945–3952PubMedGoogle Scholar
  31. LaRiviere FJ, Wolfson AD et al (2001) Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294(5540):165–168CrossRefPubMedGoogle Scholar
  32. Li Z, Deutscher MP (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86(3):503–512CrossRefPubMedGoogle Scholar
  33. Li Z, Deutscher MP (2002) RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8(1):97–109CrossRefPubMedGoogle Scholar
  34. Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37(28):10126–10133CrossRefPubMedGoogle Scholar
  35. Loria A, Pan T (1999) The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry 38(27):8612–8620CrossRefPubMedGoogle Scholar
  36. Ow MC, Kushner SR (2002) Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev 16(9):1102–1115CrossRefPubMedGoogle Scholar
  37. Pettersson BM, Kirsebom LA (2008) The presence of a C-1/G + 73 pair in a tRNA precursor influences processing and expression in vivo. J Mol Biol 381(5):1089–1097CrossRefPubMedGoogle Scholar
  38. Potrykus K, Cashel M (2008) (p)ppGpp still magical? Annu Rev Microbiol 62:35–51CrossRefPubMedGoogle Scholar
  39. Shan SO, Herschlag D (2000) An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. RNA 6(6):795–813CrossRefPubMedGoogle Scholar
  40. Smith D, Pace NR (1993) Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry 32(20):5273–5281CrossRefPubMedGoogle Scholar
  41. Smith D, Burgin AB et al (1992) Influence of metal ions on the ribonuclease P reaction Distinguishing substrate binding from catalysis. J Biol Chem 267(4):2429–2436PubMedGoogle Scholar
  42. Smith JK, Hsieh J et al (2007) Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 87(5–6):329–338CrossRefPubMedGoogle Scholar
  43. Sun L, Campbell FE et al (2006) Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 25(17):3998–4007CrossRefPubMedGoogle Scholar
  44. Szaflarski W, Vesper O et al (2008) New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J Mol Biol 380(1):193–205CrossRefPubMedGoogle Scholar
  45. Tous C, Vega-Palas MA et al (2001) Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs. Insight in the in vivo maturation pathway of transfer and other stable RNAs. J Biol Chem 276(31):29059–29066CrossRefPubMedGoogle Scholar
  46. Wegscheid B, Hartmann RK (2007) In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3′-CCA. Nucleic Acids Res 35(6):2060–2073CrossRefPubMedGoogle Scholar
  47. Zahler NH, Christian EL et al (2003) Recognition of the 5′ leader of pre-tRNA substrates by the active site of ribonuclease P. RNA 9(6):734–745CrossRefPubMedGoogle Scholar
  48. Zahler NH, Sun L, et al (2005) The pre-tRNA nucleotide base and 2′-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 345(5): 969–985. Epub 2004 Dec 8Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.RNA Center and Department of BiochemistryCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations