Ribonuclease P pp 113-134 | Cite as

Roles of Metal Ions in RNase P Catalysis

  • Leif A. Kirsebom
Part of the Protein Reviews book series (PRON, volume 10)


As for other RNA, RNase P with its catalytic RNA subunit requires metal(II)-ions for function. Approximately 100 metal(II)-ions bind to the 400 residues long RNA and several to the precursor substrate, e.g., roughly 25–30 to a tRNA precursor substrate. To understand the function and the reaction catalyzed by RNase P an important task is to identify and characterize metal(II)-ions or metal binding sites that contribute to folding of the RNAs, interaction with the protein subunit(s), substrate binding and chemistry of cleavage. Over the years, different methods have been explored to extract information about how, were and when metal(II)-ions bind to RNA. In this chapter, I will discuss our current understanding of RNase P and metal(II)-ions and how this knowledge can be utilized to search for new candidate drugs referred to as metal mimics.


Cleavage Site Nucleophilic Attack Interaction Influence Scissile Bond Mediate Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank my colleagues over the years for a pleasant and stimulating working atmosphere, Dr. S. Dasgupta for comments on the manuscript, and Drs N.E. Mikkelsen and S. Trobro for help with the figures 1, 2 and 3. This work was supported by the Strategic Research Foundation, and the Swedish Research Council.


  1. Beebe JA, Kurz JC, Fierke CA (1996) Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry 35:10493–10505PubMedCrossRefGoogle Scholar
  2. Brännvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction. J Mol Biol 292:53–63PubMedCrossRefGoogle Scholar
  3. Brännvall M, Kirsebom LA (2001) Metal ion cooperativity in ribozyme cleavage of RNA. Proc Natl Acad Sci U S A 98:12943–12947PubMedCrossRefGoogle Scholar
  4. Brännvall M, Kirsebom LA (2005) Complexity in the orchestration of the chemical groups near different cleavage sites in RNase P RNA mediated cleavage. J Mol Biol 351:251–257PubMedCrossRefGoogle Scholar
  5. Brännvall M, Mikkelesen NE, Kirsebom LA (2001) Monitoring the structure of Escherichia coli RNase P RNA in the presence of various metal ion. Nucl Acids Res 29:1426–1432PubMedCrossRefGoogle Scholar
  6. Brännvall M, Pettersson BMF, Kirsebom LA (2002) The residue immediately upstream of the RNase P cleavage site is a positive determinant. Biochemie 84:693–703CrossRefGoogle Scholar
  7. Brännvall M, Pettersson BMF, Kirsebom LA (2003) Importance of the +73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination. J Mol Biol 325:697–709PubMedCrossRefGoogle Scholar
  8. Brännvall M, Kikovska E, Kirsebom LA (2004) Cross talk in RNase P RNA mediated cleavage. Nucl Acids Res 32:5418–5429PubMedCrossRefGoogle Scholar
  9. Brännvall M, Kikovska E, Wu S, Kirsebom LA (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372:1149–1164PubMedCrossRefGoogle Scholar
  10. Brown RS, Dewan JC, Klug A (1985) Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24:4785–4801PubMedCrossRefGoogle Scholar
  11. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30 S ribosomal subunit and its interaction with antibiotics. Nature 407:340–348PubMedCrossRefGoogle Scholar
  12. Cassano AG, Anderson VE, Harris ME (2004) Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis. Biochemistry 43:10547–10559PubMedCrossRefGoogle Scholar
  13. Chang SE, Smith JD (1973) Structural studies on a tyrosine tRNA precursor. Nat New Biol 246:165–168PubMedCrossRefGoogle Scholar
  14. Chen Y, Li X, Gegenheimer P (1997) Ribonuclease P catalysis requires Mg2+ coordinated to the pro-Rp oxygen of the scissile bond. Biochemistry 36:2425–2438PubMedCrossRefGoogle Scholar
  15. Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519PubMedCrossRefGoogle Scholar
  16. Christian EL, Smith KMJ, Perera N, Harris ME (2006) The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA 12:1463–1467PubMedCrossRefGoogle Scholar
  17. Ciesiolka J, Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1994) Lead-ion-induced cleavage of RNase P RNA. Eur J Biochem 219:49–56PubMedCrossRefGoogle Scholar
  18. Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37:9409–9416PubMedCrossRefGoogle Scholar
  19. Crary SM, Kurz JC, Fierke CA (2002) Specific phosphorothioate substitutions probe the active site of Bacillus subtilis ribonuclease P. RNA 8:933–947PubMedCrossRefGoogle Scholar
  20. Crothers DM, Seno T, Söll DG (1972) Is there a discriminator site in transfer RNA? Proc Natl Acad Sci U S A 69:3063–3067PubMedCrossRefGoogle Scholar
  21. Cuzic S, Hartmann RK (2005) Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor. Nucl Acids Res 33:2464–2474PubMedCrossRefGoogle Scholar
  22. Cuzic S, Heidemann KA, Wöhnert J, Hartmann RK (2008) Escherichia coli RNase P RNA: substrate ribose at G+1, but not nucleotide -1/+73 base pairing, affect the transition state for cleavage chemistry. J Mol Biol 379:1–8Google Scholar
  23. Davies J (1994) New pathogens and old resistance genes. Microbiologica 10:9–12Google Scholar
  24. Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240PubMedCrossRefGoogle Scholar
  25. Davies J, von Ahsen U, Schroeder R (1993) Antibiotics and the RNA world: a role for low-molecular-weight effectors in biochemical evolution? In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 185–204Google Scholar
  26. Day-Storms JJ, Niranjanakumari S, Fierke CA (2004) Ionic interactions between P RNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA 10:1595–1608PubMedCrossRefGoogle Scholar
  27. Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V (2002) Inhibition of bacterial RNase P by aminoglycoside–arginine conjugates. FEBS Lett 511:107–112PubMedCrossRefGoogle Scholar
  28. Fang X, Pan T, Sosnick TR (1999) Mg2 + -dependent folding of a large ribozyme without kinetic traps. Nat Struct Biol 6:1091–1095PubMedCrossRefGoogle Scholar
  29. Feig AL, Uhlenbeck OC (1999) The role of metal ions in RNA biochemistry. In: Gesteland R, Cech T, Atkins J (eds) RNA world II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 287–319Google Scholar
  30. Forster AC, Altman S (1990) External guide sequences for an RNA enzyme. Science 249:783–786Google Scholar
  31. Frank DN, Pace NR (1997) In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A 94:14355–14360PubMedCrossRefGoogle Scholar
  32. Gardiner KJ, Marsh TL, Pace NR (1985) Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem 260:5415–5419PubMedGoogle Scholar
  33. Gaur RK, Krupp G (1993) Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucl Acids Res 21:21–26PubMedCrossRefGoogle Scholar
  34. Gesteland RF, Cech TR, Atkins JF (2006) The RNA world, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor, NYGoogle Scholar
  35. Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM (2007) Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13:251–266PubMedCrossRefGoogle Scholar
  36. Glemarec C, Kufel J, Földesi A, Maltseva T, Sandström A, Kirsebom LA, Chattopadhyaya J (1996) The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the ′NMR-window′ concept]. Nucl Acids Res 24:2022–2035PubMedCrossRefGoogle Scholar
  37. Gopalan V, Altman S (2006) Ribonuclease P: structure and catalysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY, available only online
  38. Gordon PE, Sontheimer EJ, Piccirilli JA (2000) Kinetic characterization of the second step of group II intron splicing: Role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39:12939–12952PubMedCrossRefGoogle Scholar
  39. Guerrier-Takada C, Altman S (1992) Reconstitution of enzymatic activity from fragments of M1 RNA. Proc Natl Acad Sci U S A 89:1266–1270PubMedCrossRefGoogle Scholar
  40. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of riboNucleicease P is the catalytic subunit of the enzyme. Cell 35:849–857PubMedCrossRefGoogle Scholar
  41. Guerrier-Takada C, Haydock K, Allen L, Altman S (1986) Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry 25:1509–1515PubMedCrossRefGoogle Scholar
  42. Hansen A, Pfeiffer T, Zuleeg T, Limmer S, Ciesiolka J, Feltens R, Hartmann RK (2001) Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis. Mol Microbiol 41:131–143PubMedCrossRefGoogle Scholar
  43. Hardt W-D, Hartmann RK (1996) Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA. J Mol Biol 259:422–433PubMedCrossRefGoogle Scholar
  44. Hardt W-D, Warnecke JM, Erdmann VA, Hartmann RK (1995) Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding. EMBO J 14:2935–2944PubMedGoogle Scholar
  45. Harris ME, Pace NR (1995) Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA 1:210–218PubMedGoogle Scholar
  46. Hermann T (2003) Chemical and functional diversity of small molecule ligands for RNA. Biopolymers 70:4–18PubMedCrossRefGoogle Scholar
  47. Hermann T, Westhof E (1998) Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J Mol Biol 276:903–912PubMedCrossRefGoogle Scholar
  48. Jovanovic M, Sanchez R, Altman S, Gopalan V (2002) Elucidation of structure–function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Nucl Acids Res 30:5065–5073PubMedCrossRefGoogle Scholar
  49. Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: Cleavage by Mg2+ in 15-year old crystals. J Mol Biol 301:401–414PubMedCrossRefGoogle Scholar
  50. Kawamoto SA, Sudhahar CG, Hatfield CL, Sun J, Behrman EJ, Gopalan V (2008) Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucl Acids Res 36:697–704PubMedCrossRefGoogle Scholar
  51. Kaye NM, Zahler NH, Christian EL, Harris ME (2002a) Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA. J Mol Biol 324:429–442PubMedCrossRefGoogle Scholar
  52. Kaye NM, Christian EL, Harris ME (2002b) NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1–P4 multihelix junction contributes to catalysis. Biochemistry 41:4533–4545PubMedCrossRefGoogle Scholar
  53. Kazakov S, Altman S (1991) Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A 88:9193–9197PubMedCrossRefGoogle Scholar
  54. Kazantsev AV, Krivenko AA, Pace NR (2009) Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15:266–276PubMedCrossRefGoogle Scholar
  55. Kent O, Chaulk SG, MacMillan AM (2000) Kinetic analysis of the M1 RNA folding pathway. J Mol Biol 304:699–705PubMedCrossRefGoogle Scholar
  56. Kikovska E, Brännvall M, Kufel J, Kirsebom LA (2005a) Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site. Nucl Acids Res 33:2012–2021PubMedCrossRefGoogle Scholar
  57. Kikovska E, Mikkelsen N-E, Kirsebom LA (2005b) The naturally trans-acting ribozyme RNase P RNA has leadzyme properties. Nucl Acids Res 33:6920–6930PubMedCrossRefGoogle Scholar
  58. Kikovska E, Brännvall M, Kirsebom LA (2006) The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 359:572–584PubMedCrossRefGoogle Scholar
  59. Kikovska E, Svärd SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 104:2062–2067PubMedCrossRefGoogle Scholar
  60. Kirsebom LA, Virtanen A, Mikkelsen NE (2006) Aminoglycoside interaction with RNA and nucleases. In: Barciszewski J, Brosius J, Erdmann VA (eds) Handbok Exp Pharmacol 173 RNA towards medicine. Wiley Press, pp 73–96Google Scholar
  61. Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194PubMedCrossRefGoogle Scholar
  62. Kirsebom LA, Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13:4870–4876PubMedGoogle Scholar
  63. Kirsebom LA, Trobro S (2009) RNase P RNA-mediated cleavage. IUBMB Life 61:189–200PubMedCrossRefGoogle Scholar
  64. Kleineidam RG, Pitulle C, Sproat B, Krupp G (1993) Efficient cleavage of pre-tRNAs by E. coli RNase P RNA requires the 2′-hydroxyl of the ribose at the cleavage site. Nucl Acids Res 21:1097–1101PubMedCrossRefGoogle Scholar
  65. Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44:3249–3256Google Scholar
  66. Krzyzosiak WJ, Marciniec T, Wiewiórowski M, Romby P, Ebel J, Giegé R (1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27:5771–5777PubMedCrossRefGoogle Scholar
  67. Kufel J, Kirsebom LA (1994) Cleavage site selection by M1 RNA the catalytic subunit of Escherichia coli RNase P, is influenced by pH. J Mol Biol 244:511–521PubMedCrossRefGoogle Scholar
  68. Kufel J, Kirsebom LA (1996) Residues in Escherichia coli RNase P RNA important for cleavage site selection and divalent metal ion binding. J Mol Biol 263:685–698PubMedCrossRefGoogle Scholar
  69. Kufel J, Kirsebom LA (1998) The P15-loop of Escherichia coli RNase P RNA is an autonomous divalent metal ion binding domain. RNA 4:777–788Google Scholar
  70. Kurz JC, Fierke CA (2002) The affinity of magnesium binding sites in the Bacillus subtilis RNase P-pre-tRNA complex is enhanced by the protein subunit. Biochemistry 41:9545–9558PubMedCrossRefGoogle Scholar
  71. Lindell M, Brännvall M, Wagner EGH, Kirsebom LA (2005) Lead(II) cleavage analysis of RNase P RNA in vivo. RNA 11:1348–1354PubMedCrossRefGoogle Scholar
  72. Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2:551–563PubMedGoogle Scholar
  73. Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 36:6317–6325PubMedCrossRefGoogle Scholar
  74. Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37:10126–10133PubMedCrossRefGoogle Scholar
  75. Loria A, Niranjanakumari S, Fierke CA, Pan T (1998) Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37:15466–15473PubMedCrossRefGoogle Scholar
  76. Mans RM, Guerrier-Takada C, Altman S, Pleij CW (1990) Interaction of RNase P from Escherichia coli with pseudoknotted structures in viral RNAs. Nucl Acids Res 18:3479–3487Google Scholar
  77. Marciniec T, Ciesiołka J, Wrzesiński J, Wiewiórowski M, Krzyzosiak WJ (1989) Specificity and mechanism of the cleavages induced in yeast tRNAPhe by magnesium ions. Acta Biochim Polon 36:115–122Google Scholar
  78. Massire C, Jaeger L, Westhof E (1998) Derivation of the thres-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol 279:773–793Google Scholar
  79. Mattsson JG, Svärd SG, Kirsebom LA (1994) Characterization of the Borrelia burgdorferi RNase P RNA gene reveals a novel tertiary interaction. J Mol Biol 241:1–6PubMedCrossRefGoogle Scholar
  80. McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238:527–530Google Scholar
  81. Mikkelsen N-E, Brännvall M, Virtanen A, Kirsebom LA (1999) Inhibition of RNase P RNA cleavage by aminoglycosides. Proc Natl Acad Sci U S A 96:6155–6160PubMedCrossRefGoogle Scholar
  82. Mikkelsen N-E, Johansson K, Virtanen A, Kirsebom LA (2001) Aminoglycoside binding displaces a divalent metal ion in a tRNA–neomycin B complex. Nat Struct Biol 8:510–514PubMedCrossRefGoogle Scholar
  83. Misra VK, Draper DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48:113–135PubMedCrossRefGoogle Scholar
  84. Murphy FL, Cech TR (1993) An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32:5291–5300PubMedCrossRefGoogle Scholar
  85. Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217PubMedCrossRefGoogle Scholar
  86. Paisley T, Van Tuyle GC (1994) The processing of wild type and mutant forms of rat nuclear pre-tRNALys by homologous RNase P. Nucl Acids Res 22:3347–3353PubMedCrossRefGoogle Scholar
  87. Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34:902–909PubMedCrossRefGoogle Scholar
  88. Pan T, Jakacka M (1996) Multiple substrate binding sites in the ribozyme from Bacillus subtilis RNase P. EMBO J 15:2249–2255PubMedGoogle Scholar
  89. Pannucci JA, Haas ES, Hall TA, Brown JW (1999) RNase P RNAs from some archaea are catalytically active. Proc Natl Acad Sci U S A 96:7803–7808Google Scholar
  90. Perreault J-P, Altman S (1992) Important 2′-hydroxyl groups in model substrates for M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli. J Mol Biol 226:399–409PubMedCrossRefGoogle Scholar
  91. Perreault J-P, Altman S (1993) Pathway of activation by magnesium ions of substrates for the catalytic subunit of RNase P from Escherichia coli. J Mol Biol 230:750–756PubMedCrossRefGoogle Scholar
  92. Persson T, Cuzic S, Hartmann RK (2003) Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 278:43394–43401PubMedCrossRefGoogle Scholar
  93. Pfeiffer T, Tekos A, Warnecke JM, Drainas D, Engelke DR, Séraphin B, Hartmann RK (2000) Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes. J Mol Biol 298:559–565PubMedCrossRefGoogle Scholar
  94. Reich C, Olsen GJ, Pace B, Pace NR (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239:178–181PubMedCrossRefGoogle Scholar
  95. Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J Biol Chem 247:5243–5251PubMedGoogle Scholar
  96. Sampson JR, Sullivan FX, Behlen AB, DiRenzo AB, Uhlenbeck OC (1987) Characterization of two RNA-catalyzed RNA cleavage reactions. Cold Spring Harbor Symp Quant Biol 52:267–275PubMedGoogle Scholar
  97. Schlegl J, Fürste JP, Bald R, Erdmann VA, Hartmann RK (1992) Cleavage efficiences of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus. Nucl Acids Res 20:5963–5970PubMedCrossRefGoogle Scholar
  98. Schmitz M (2004) Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy. Nucl Acids Res 32:6358–6366PubMedCrossRefGoogle Scholar
  99. Schmitz M, Tinoco I Jr (2000) Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA 6:1212–1225PubMedCrossRefGoogle Scholar
  100. Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6:1091–1105PubMedCrossRefGoogle Scholar
  101. Smith D, Pace NR (1993) Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry 32:5273–5281PubMedCrossRefGoogle Scholar
  102. Smith D, Burgin AB, Haas ES, Pace NR (1992) Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis. J Biol Chem 267:2429–2436PubMedGoogle Scholar
  103. Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 33:D139–D140PubMedCrossRefGoogle Scholar
  104. Stahley MR, Strobel SA (2005) Structural evidence for two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590PubMedCrossRefGoogle Scholar
  105. Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90:6498–6502PubMedCrossRefGoogle Scholar
  106. Summers JS, Shimko J, Freedman FL, Badger CT, Sturgess M (2002) Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement. J Am Chem Soc 124:14934–149339PubMedCrossRefGoogle Scholar
  107. Svärd SG, Kirsebom LA (1992) Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site. J Mol Biol 227:1019–1031PubMedCrossRefGoogle Scholar
  108. Svärd SG, Mattsson JG, Johansson KE, Kirsebom LA (1994) Cloning and characterization of the RNase P RNA genes from two porcine mycoplasmas. Mol Microbiol 11:849–859PubMedCrossRefGoogle Scholar
  109. Tallsjö A, Kirsebom LA (1992) Product release is a rate-limiting step during cleavage by the catalytic RNA subunit of Escherichia coli RNase P. Nucl Acids Res 21:51–57CrossRefGoogle Scholar
  110. Tallsjö A, Svärd SG, Kufel J, Kirsebom LA (1993) A novel tertiary interaction in M1 RNA, the catalytic subunit of Escherichia coli RNase P. Nucl Acids Res 21:3927–3933PubMedCrossRefGoogle Scholar
  111. Tekos A, Tsagla A, Stathopoulos C, Drainas D (2000) Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett 485:71–75PubMedCrossRefGoogle Scholar
  112. Thomas BC, Chamberlain J, Engelke DR, Gegenheimer P (2000) Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA 6:554–562PubMedCrossRefGoogle Scholar
  113. Toor N, Rajashankar K, Keating KS, Pyle AM (2008) Structural basis for exon recognition by a group II intron. Nat Struct Mol Biol 15:1221–1222PubMedCrossRefGoogle Scholar
  114. Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragón A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587PubMedCrossRefGoogle Scholar
  115. Tsai H-Y, Pulukkunat DK, Woznick WK, Gopalan V (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci U S A 103:16147–16152PubMedCrossRefGoogle Scholar
  116. Vicens Q, Westhof E (2003) RNA as a drug target: the case of aminoglycosides. ChemBioChem 4:1018–1023PubMedCrossRefGoogle Scholar
  117. Walker SC, Engelke DR (2006) Ribonuclease P: The evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 41:77–102PubMedCrossRefGoogle Scholar
  118. Walsh C (2003) Antibiotics: actions, origins, resistance. ASM Press, Washington DC, USAGoogle Scholar
  119. Walter F, Vicens Q, Westhof E (1999) Aminoglycoside–RNA interactions. Curr Opin Chem Biol 3:694–704PubMedCrossRefGoogle Scholar
  120. Wang YH, Murphy FL, Cech TR, Griffith JD (1994) Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. J Mol Biol 236:64–71PubMedCrossRefGoogle Scholar
  121. Warnecke JM, Fürste JP, Hardt W-D, Erdmann VA, Hartmann RK (1996) Ribonuclease P (RNase P) RNA is converted to a Cd2 + -ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci U S A 93:8924–8928PubMedCrossRefGoogle Scholar
  122. Warnecke JM, Held R, Busch S, Hartmann RK (1999) Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol 290:433–445PubMedCrossRefGoogle Scholar
  123. Warnecke JM, Sontheimer EJ, Piccirilli JA, Hartmann RK (2000) Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3′-S-phosphorothiolate internucleotide linkage. Nucl Acids Res 28:720–727PubMedCrossRefGoogle Scholar
  124. Werner C, Krebs B, Keith G, Dirheimer G (1976) Specific cleavages of pure tRNAs by plumbous ions. Biochem Biophys Acta 432:161–175PubMedGoogle Scholar
  125. Wintermeyer W, Zachau HG (1973) Mg2+-catalyzed specific splitting of tRNA. Biochim Biophys Acta 299:82–90PubMedGoogle Scholar
  126. Yonath A, Bashan A (2004) Ribosomal crystallography: Initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 58:233–251PubMedCrossRefGoogle Scholar
  127. Zahler NH, Christian EL, Harris ME (2003) Recognition of the 5′ leader of pre-tRNA substrates by the active site of ribonuclease P. RNA 9:734–745PubMedCrossRefGoogle Scholar
  128. Zahler NH, Sun L, Christian EL, Harris ME (2005) The pre-tRNA nucleotide base and 2′-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 345:969–985 Google Scholar
  129. Zarrinkar PP, Wang J, Williamson JR (1996) Slow folding kinetics of RNase P RNA. RNA 2:564–573PubMedGoogle Scholar
  130. Zembower TR, Noskin GA, Postelnick MJ, Nguyen C, Peterson LR (1998) The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents 10:95–105PubMedCrossRefGoogle Scholar
  131. Zito K, Hüttenhofer A, Pace NR (1993) Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure. Nucl Acids Res 21:5916–5920PubMedCrossRefGoogle Scholar
  132. Zuleeg T, Hartmann RK, Kreutzer R, Limmer S (2001a) NMR spectroscopic evidence for Mn(2+)(Mg(2+)) binding to a precursor-tRNA microhelix near the potential RNase P cleavage site. J Mol Biol 305:181–189PubMedCrossRefGoogle Scholar
  133. Zuleeg T, Hansen A, Pfeiffer T, Schubel H, Kreutzer R, Hartmann RK, Limmer S (2001b) Correlation between processing efficiency for ribonuclease P minimal substrates and conformation of the nucleotide −1 at the cleavage position. Biochemistry 40:3363–3369PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyBiomedical Center, Uppsala UniversityUppsalaSweden

Personalised recommendations