Kinetic Mechanism of Bacterial RNase P

  • Kristin S. Koutmou
  • John Hsieh
  • Carol A. Fierke
Part of the Protein Reviews book series (PRON, volume 10)


This chapter analyzes the functional contributions of the three components required for bacterial RNase P catalysis: PRNA, P protein, and magnesium ions. This comprehensive overview of the bacterial RNase P reaction analyzes the kinetic data demonstrating a minimal kinetic mechanism with diffusion-controlled substrate association, rapid bond cleavage, and slow product release. The possibility of an additional step, a conformational change following substrate binding, in the minimal mechanism is also addressed. The kinetics of pre-tRNA 5′ cleavage catalyzed by the bacterial PRNA ribozyme, bacterial RNase P holoenzyme, and yeast RNase P holoenzyme are carefully compared.


Kinetic Mechanism Hepatitis Delta Virus Association Rate Constant Single Turnover Central Cleft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Nathan Zahler, Terry Watt, and James Hougland for their helpful discussions in the preparation of this manuscript. This project is supported National Institutes of Health (GM 55387 (CAF) and T32 GM08353 (KSK)).


  1. Alifano P, Rivellini F, Piscitelli C, Arraiano CM, Bruni CB, Carlomagno MS (1994) Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8(24):3021–3031CrossRefPubMedGoogle Scholar
  2. Altman S (1989) Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol Relat Areas Mol Biol 62:1–36PubMedGoogle Scholar
  3. Altman S, Wesolowski D, Guerrier-Takada C, Li Y (2005) RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci U S A 102(32):11284–11289CrossRefPubMedGoogle Scholar
  4. Beebe JA, Fierke CA (1994) A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry 33(34):10294–10304CrossRefPubMedGoogle Scholar
  5. Beebe JA, Kurz JC, Fierke CA (1996) Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry 35(32):10493–10505CrossRefPubMedGoogle Scholar
  6. Bothwell AL, Stark BC, Altman S (1976) Ribonuclease P substrate specificity: cleavage of a bacteriophage phi80-induced RNA. Proc Natl Acad Sci U S A 73(6):1912–1916CrossRefPubMedGoogle Scholar
  7. Brannvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction. J Mol Biol 292(1):53–63CrossRefPubMedGoogle Scholar
  8. Brannvall M, Mattsson JG, Svard SG, Kirsebom LA (1998) RNase P RNA structure and cleavage reflect the primary structure of tRNA genes. J Mol Biol 283(4):771–783CrossRefPubMedGoogle Scholar
  9. Brannvall M, Pettersson BM, Kirsebom LA (2003) Importance of the  + 73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination. J Mol Biol 325(4):697–709CrossRefPubMedGoogle Scholar
  10. Brannvall M, Kikovska E, Wu S, Kirsebom LA (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372(5):1149–1164CrossRefPubMedGoogle Scholar
  11. Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR (2005) Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 24(19):3360–3368CrossRefPubMedGoogle Scholar
  12. Cassano AG, Anderson VE, Harris ME (2002) Evidence for direct attack by hydroxide in phosphodiester hydrolysis. J Am Chem Soc 124(37):10964–10965CrossRefPubMedGoogle Scholar
  13. Cassano AG, Anderson VE, Harris ME (2004a) Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis. Biochemistry 43(32):10547–10559CrossRefPubMedGoogle Scholar
  14. Cassano AG, Anderson VE, Harris ME (2004b) Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers 73(1):110–129CrossRefPubMedGoogle Scholar
  15. Christian EL, Harris ME (1999) The track of the pre-tRNA 5′ leader in the ribonuclease P ribozyme–substrate complex. Biochemistry 38(39):12629–12638CrossRefPubMedGoogle Scholar
  16. Christian EL, McPheeters DS, Harris ME (1998) Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking. Biochemistry 37(50):17618–17628CrossRefPubMedGoogle Scholar
  17. Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6(4):511–519CrossRefPubMedGoogle Scholar
  18. Christian EL, Smith KM, Perera N, Harris ME (2006) The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA 12(8):1463–1467CrossRefPubMedGoogle Scholar
  19. Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37(26):9409–9416CrossRefPubMedGoogle Scholar
  20. Crary SM, Kurz JC, Fierke CA (2002) Specific phosphorothioate substitutions probe the active site of Bacillus subtilis ribonuclease P. RNA 8(7):933–947CrossRefPubMedGoogle Scholar
  21. DeRose VJ (2002) Two decades of RNA catalysis. Chem Biol 9(9):961–969CrossRefPubMedGoogle Scholar
  22. Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418(6894):222–228CrossRefPubMedGoogle Scholar
  23. Fersht A (1985) Enzyme structure and mechanism. W.H. Freeman, New YorkGoogle Scholar
  24. Fierke CA, Hammes GG (1995) Transient kinetic approaches to enzyme mechanisms. Methods Enzymol 249:3–37CrossRefPubMedGoogle Scholar
  25. Forster AC, Altman S (1990) External guide sequences for an RNA enzyme. Science 249(4970):783–786CrossRefPubMedGoogle Scholar
  26. Frank DN, Pace NR (1997) In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A 94(26):14355–14360CrossRefPubMedGoogle Scholar
  27. Frank DN, Pace NR (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem 67:153–180CrossRefPubMedGoogle Scholar
  28. Gardiner KJ, Marsh TL, Pace NR (1985) Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem 260(9):5415–5419PubMedGoogle Scholar
  29. Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM (2007) Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13(2):251–266CrossRefPubMedGoogle Scholar
  30. Gimple O, Schon A (2001) In vitro and in vivo processing of cyanelle tmRNA by RNase P. Biol Chem 382(10):1421–1429CrossRefPubMedGoogle Scholar
  31. Gopalan V, Baxevanis AD, Landsman D, Altman S (1997) Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. J Mol Biol 267(4):818–829CrossRefPubMedGoogle Scholar
  32. Gossringer M, Kretschmer-Kazemi Far R, Hartmann RK (2006) Analysis of RNase P protein (rnpA) expression in Bacillus subtilis utilizing strains with suppressible rnpA expression. J Bacteriol 188(19):6816–6823CrossRefPubMedGoogle Scholar
  33. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857CrossRefPubMedGoogle Scholar
  34. Guerrier-Takada C, Haydock K, Allen L, Altman S (1986) Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry 25(7):1509–1515CrossRefPubMedGoogle Scholar
  35. Hanna R, Doudna JA (2000) Metal ions in ribozyme folding and catalysis. Curr Opin Chem Biol 4(2):166–170CrossRefPubMedGoogle Scholar
  36. Hardt WD, Warnecke JM, Erdmann VA, Hartmann RK (1995) Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding. EMBO J 14(12):2935–2944PubMedGoogle Scholar
  37. Harris ME, Christian EL (2003) Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P. Curr Opin Struct Biol 13(3):325–333CrossRefPubMedGoogle Scholar
  38. Harris ME, Pace NR (1995) Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA 1(2):210–218PubMedGoogle Scholar
  39. Harris DA, Rueda D, Walter NG (2002) Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41(40):12051–12061CrossRefPubMedGoogle Scholar
  40. Hartmann RK, Heinrich J, Schlegl J, Schuster H (1995) Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc Natl Acad Sci U S A 92(13):5822–5826CrossRefPubMedGoogle Scholar
  41. Heide C, Pfeiffer T, Nolan JM, Hartmann RK (1999) Guanosine 2-NH2 groups of Escherichia coli RNase P RNA involved in intramolecular tertiary contacts and direct interactions with tRNA. RNA 5(1):102–116CrossRefPubMedGoogle Scholar
  42. Heide C, Busch S, Feltens R, Hartmann RK (2001a) Distinct modes of mature and precursor tRNA binding to Escherichia coli RNase P RNA revealed by NAIM analyses. RNA 7(4):553–564CrossRefPubMedGoogle Scholar
  43. Heide C, Feltens R, Hartmann RK (2001b) Purine N7 groups that are crucial to the interaction of Escherichia coli rnase P RNA with tRNA. RNA 7(7):958–968CrossRefPubMedGoogle Scholar
  44. Hougland JL, Piccirilli JA, Forconi M, Lee J, Herschlag D (2006) How the group I intron works: a case study of RNA structure and function. In: Gesteland RF, Cech T, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  45. Hsieh J, Fierke CA (2009). Conformational change in the B. subtilis RNase P-pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA 15(8):1565–1577Google Scholar
  46. Hsieh J, Andrews AJ, Fierke CA (2004) Roles of protein subunits in RNA–protein complexes: lessons from ribonuclease P. Biopolymers 73(1):79–89CrossRefPubMedGoogle Scholar
  47. Hsieh J, Walker S, Fierke CA, Engelke DR (2009) Pre-tRNA cleavage by the yeast nuclear RNase P holoenzyme is rate-limited by slow product release. RNA 15(2):224–234Google Scholar
  48. Jovanovic M, Sanchez R, Altman S, Gopalan V (2002) Elucidation of structure–function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Nucleic Acids Res 30(23):5065–5073CrossRefPubMedGoogle Scholar
  49. Kaye NM, Christian EL, Harris ME (2002) NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1–P4 multihelix junction contributes to catalysis. Biochemistry 41(14):4533–4545CrossRefPubMedGoogle Scholar
  50. Kazantsev AV, Krivenko AA, Harrington DJ, Carter RJ, Holbrook SR, Adams PD, Pace NR (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 100(13):7497–7502CrossRefPubMedGoogle Scholar
  51. Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102(38):13392–13397CrossRefPubMedGoogle Scholar
  52. Kirsebom LA, Svard SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13(20):4870–4876PubMedGoogle Scholar
  53. Komine Y, Kitabatake M, Yokogawa T, Nishikawa K, Inokuchi H (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A 91(20):9223–9227CrossRefPubMedGoogle Scholar
  54. Kurz JC, Fierke CA (2000) Ribonuclease P: a ribonucleoprotein enzyme. Curr Opin Chem Biol 4(5):553–558CrossRefPubMedGoogle Scholar
  55. Kurz JC, Fierke CA (2002) The affinity of magnesium binding sites in the Bacillus subtilis RNase P x pre-tRNA complex is enhanced by the protein subunit. Biochemistry 41(30):9545–9558CrossRefPubMedGoogle Scholar
  56. Kurz JC, Niranjanakumari S, Fierke CA (1998) Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 37(8):2393–2400CrossRefPubMedGoogle Scholar
  57. LaGrandeur TE, Darr SC, Haas ES, Pace NR (1993) Characterization of the RNase P RNA of Sulfolobus acidocaldarius. J Bacteriol 175(16):5043–5048PubMedGoogle Scholar
  58. Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2(6):551–563PubMedGoogle Scholar
  59. Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37(28):10126–10133CrossRefPubMedGoogle Scholar
  60. Loria A, Pan T (2001) Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B subtilis RNase P protein. Nucleic Acids Res 29(9):1892–1897CrossRefPubMedGoogle Scholar
  61. Loria A, Niranjanakumari S, Fierke CA, Pan T (1998) Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37(44):15466–15473CrossRefPubMedGoogle Scholar
  62. Marshall GR, Feng JA, Kuster DJ (2008) Back to the future: ribonuclease A. Biopolymers 90(3):259–277CrossRefPubMedGoogle Scholar
  63. Misra VK, Shiman R, Draper DE (2003) A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69(1):118–136CrossRefPubMedGoogle Scholar
  64. Narlikar GJ, Herschlag D (1997) Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem 66:19–59CrossRefPubMedGoogle Scholar
  65. Nieuwlandt DT, Haas ES, Daniels CJ (1991) The RNA component of RNase P from the archaebacterium Haloferax volcanii. J Biol Chem 266(9):5689–5695PubMedGoogle Scholar
  66. Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95(26):15212–15217CrossRefPubMedGoogle Scholar
  67. Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA (2007) Probing the architecture of the B. subtilis RNase P Holoenzyme active site by crosslinking and affinity cleavage. RNA 13:512–535CrossRefGoogle Scholar
  68. Pace NR, Brown JW (1995) Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J Bacteriol 177(8):1919–1928PubMedGoogle Scholar
  69. Pace NR, Smith D (1990) Ribonuclease P: function and variation. J Biol Chem 265(7):3587–3590PubMedGoogle Scholar
  70. Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34(3):902–909CrossRefPubMedGoogle Scholar
  71. Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221(1):1–5Google Scholar
  72. Pomeranz Krummel DA, Kent O, MacMillan AM, Altman S (2000) Evidence for helical unwinding of an RNA substrate by the RNA enzyme RNase P: use of an interstrand disulfide crosslink in substrate. J Mol Biol 295(5):1113–1118CrossRefPubMedGoogle Scholar
  73. Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267(5194):90–93CrossRefPubMedGoogle Scholar
  74. Rasmussen TA, Nolan JM (2002) G350 of Escherichia coli RNase P RNA contributes to Mg2+ binding near the active site of the enzyme. Gene 294(1–2):177–185CrossRefPubMedGoogle Scholar
  75. Reich C, Olsen GJ, Pace B, Pace NR (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239(4836):178–181CrossRefPubMedGoogle Scholar
  76. Rox C, Feltens R, Pfeiffer T, Hartmann RK (2002) Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 315(4):551–560Google Scholar
  77. Rueda D, Hsieh J, Day-Storms JJ, Fierke CA, Walter NG (2005) The 5′ leader of precursor tRNA(Asp) bound to the Bacillus subtilis RNase P holoenzyme has an extended conformation. Biochemistry 44(49):16130–16139CrossRefPubMedGoogle Scholar
  78. Schmitz M, Tinoco I Jr (2000) Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA 6(9):1212–1225CrossRefPubMedGoogle Scholar
  79. Seif E, Altman S (2008) RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. RNA 14(6):1237–1243CrossRefPubMedGoogle Scholar
  80. Serpersu EH, Shortle D, ASM (1986) Kinetic and magnetic resonance studies of effects of genetic substitution of a Ca2 + -liganding amino acid in staphylococcal nuclease. Biochemistry 25(1):68–77Google Scholar
  81. Shan S, Kravchuk AV, Piccirilli JA, Herschlag D (2001) Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40(17):5161–5171CrossRefPubMedGoogle Scholar
  82. Smith D, Pace NR (1993) Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry 32(20):5273–5281CrossRefPubMedGoogle Scholar
  83. Smith D, Burgin AB, Haas ES, Pace NR (1992) Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis. J Biol Chem 267(4):2429–2436PubMedGoogle Scholar
  84. Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295(1):105–115CrossRefPubMedGoogle Scholar
  85. Stams T, Niranjanakumari S, Fierke CA, Christianson DW (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280(5364):752–755CrossRefPubMedGoogle Scholar
  86. Sun L, Harris ME (2007) Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA 13(9):1505–1515Google Scholar
  87. Sun L, Campbell FE, Zahler NH, Harris ME (2006) Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 25(17):3998–4007CrossRefPubMedGoogle Scholar
  88. Svard SG, Kagardt U, Kirsebom LA (1996) Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. RNA 2(5):463–472PubMedGoogle Scholar
  89. Tallsjo A, Kirsebom LA (1993) Product release is a rate-limiting step during cleavage by the catalytic RNA subunit of Escherichia coli RNase P. Nucleic Acids Res 21(1):51–57CrossRefPubMedGoogle Scholar
  90. Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragon A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437(7058):584–587CrossRefPubMedGoogle Scholar
  91. Tranguch AJ, Engelke DR (1993) Comparative structural analysis of nuclear RNase P RNAs from yeast. J Biol Chem 268(19):14045–14055PubMedGoogle Scholar
  92. Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328(6131):596–600CrossRefPubMedGoogle Scholar
  93. Walker SC, Engelke DR (2006) Ribonuclease P: the evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 41(2):77–102CrossRefPubMedGoogle Scholar
  94. Warnecke JM, Held R, Busch S, Hartmann RK (1999) Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol 290(2):433–445CrossRefPubMedGoogle Scholar
  95. Waugh DS, Pace NR (1993) Gap-scan deletion analysis of Bacillus subtilis RNase P RNA. FASEB J 7(1):188–195PubMedGoogle Scholar
  96. Westheimer FH (1987) Why nature chose phosphates. Science 235(4793):1173–1178CrossRefPubMedGoogle Scholar
  97. Wilson RC, Bohlen CJ, Foster MP, Bell CE (2006) Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A 103(4):873–878CrossRefPubMedGoogle Scholar
  98. Xiao S, Day-Storms JJ, Srisawat C, Fierke CA, Engelke DR (2005) Characterization of conserved sequence elements in eukaryotic RNase P RNA reveals roles in holoenzyme assembly and tRNA processing. Rna 11(6):885–896CrossRefPubMedGoogle Scholar
  99. Zahler NH, Christian EL, Harris ME (2003) Recognition of the 5′ leader of pre-tRNA substrates by the active site of ribonuclease P. RNA 9(6):734–745CrossRefPubMedGoogle Scholar
  100. Zahler NH, Sun L, Christian EL, Harris ME (2005) The pre-tRNA nucleotide base and 2′-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 345(5):969–985CrossRefPubMedGoogle Scholar
  101. Zahler NH, Koutmou KS, Kurz JC, Campbell FE, Harris ME, Fierke CA (2009) Protein-substrate contact leads to recognition of 5’ leaders by bacterial RNase P. (submitted)Google Scholar
  102. Zaug AJ, Grosshans CA, Cech TR (1988) Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme–substrate complexes. Biochemistry 27(25):8924–8931CrossRefPubMedGoogle Scholar
  103. Ziehler WA, Day JJ, Fierke CA, Engelke DR (2000) Effects of 5′ leader and 3′ trailer structures on pre-tRNA processing by nuclear RNase P. Biochemistry 39(32):9909–9916CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kristin S. Koutmou
    • 1
  • John Hsieh
    • 1
  • Carol A. Fierke
    • 1
  1. 1.Department of ChemistryUniversity of MichiganAnn ArborUSA

Personalised recommendations