Advertisement

Over a Decade of Bacterial Ribonuclease P Modeling

  • Benoît Masquida
  • Fabrice Jossinet
  • Eric Westhof
Chapter
Part of the Protein Reviews book series (PRON, volume 10)

Abstract

Ribonuclease P constitutes a unique paradigm for understanding RNA recognition, RNA catalysis as well as RNA–protein assembly. The modeling efforts, aiming at unraveling the architectural features of this ribozyme and the molecular basis conferring specificity in recognition of the pre-tRNA substrate and of the protein cofactor, are summarized in this chapter. The molecular models of the RNA subunits result from the integration of a great wealth of phylogenetic and biochemical data that have contributed to the understanding of the pre-tRNA recognition in the context of the two different A and B RNase P subtypes. Later efforts focused on the contribution of the protein subunit on both the binding to the RNA to form the holoenzyme and the selection of the substrate. The crystal structures of various components of the RNase P ribozyme show that the published 3D models successfully predicted the architectures of the RNase P RNAs. These crystal structures also show the need for further molecular modeling developments in order to improve the accuracy of the prediction and to apply them to the whole RNase P with its cofactor and substrate.

Keywords

Leader Sequence Comparative Sequence Analysis Folding Intermediate Tertiary Interaction Pace Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altman S, Kirsebom L, Talbot S (1993) Recent studies of ribonuclease P. FASEB J 7:7–14PubMedGoogle Scholar
  2. Baird NJ, Westhof E, Qin H, Pan T, Sosnick TR (2005) Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol 352:712–722CrossRefPubMedGoogle Scholar
  3. Barrera A, Fang X, Jacob J, Casey E, Thiyagarajan P, Pan T (2002) Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry 41:12986–12994CrossRefPubMedGoogle Scholar
  4. Beckert B, Nielsen H, Einvik C, Johansen SD, Westhof E, Masquida B (2008) Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes. EMBO J 27:667–678CrossRefPubMedGoogle Scholar
  5. Biswas R, Ledman DW, Fox RO, Altman S, Gopalan V (2000) Mapping RNA–protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA–Fe. J Mol Biol 296:19–31CrossRefPubMedGoogle Scholar
  6. Brännvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction. J Mol Biol 292:53–63CrossRefPubMedGoogle Scholar
  7. Brännvall M, Kikovska E, Kirsebom LA (2004) Cross talk between the + 73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 32:5418–5429CrossRefPubMedGoogle Scholar
  8. Brännvall M, Kikovska E, Wu S, Kirsebom LA (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372:1149–1164CrossRefPubMedGoogle Scholar
  9. Brown JW, Nolan JM, Haas ES, Rubio MAT, Major F, Pace NR (1996) Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci U S A 93:3001–3006CrossRefPubMedGoogle Scholar
  10. Brunel C, Romby P (2000) Probing RNA structure and RNA–ligand complexes with chemical probes. Methods Enzymol 318:3–21CrossRefPubMedGoogle Scholar
  11. Buck AH, Kazantsev AV, Dalby AB, Pace NR (2005) Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 12:958–964PubMedGoogle Scholar
  12. Burgin AB, Pace NR (1990) Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. EMBO J 9:4111–4118PubMedGoogle Scholar
  13. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1684CrossRefPubMedGoogle Scholar
  14. Cech TR (2009) Crawling out of the RNA world. Cell 136:599–602CrossRefPubMedGoogle Scholar
  15. Chen JL, Pace NR (1997) Identification of the universally conserved core of ribonuclease P RNA [letter]. RNA 3:557–560PubMedGoogle Scholar
  16. Chen JL, Nolan JM, Harris ME, Pace NR (1998) Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J 17:1515–1525CrossRefPubMedGoogle Scholar
  17. Christian EL, Harris ME (1999) The track of the pre-tRNA 5′ leader in the ribonuclease P ribozyme–substrate complex. Biochemistry 38:12629–12638CrossRefPubMedGoogle Scholar
  18. Christian EL, McPheeters DS, Harris ME (1998) Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking. Biochemistry 37:17618–17628CrossRefPubMedGoogle Scholar
  19. Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519CrossRefPubMedGoogle Scholar
  20. Costa M, Michel F (1997) Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J 16:3289–3302CrossRefPubMedGoogle Scholar
  21. Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37:9409–9416CrossRefPubMedGoogle Scholar
  22. Darr SC, Brown JW, Pace NR (1992) The varieties of ribonuclease P. Trends Biochem Sci 17:178–182CrossRefPubMedGoogle Scholar
  23. Daviter T, Gromadski KB, Rodnina MV (2006) The ribosome’s response to codon–anticodon mismatches. Biochimie 88:1001–1011CrossRefPubMedGoogle Scholar
  24. Doherty EA, Batey RT, Masquida B, Doudna JA (2001) A universal mode of helix packing in RNA. Nat Struct Biol 8:339–343CrossRefPubMedGoogle Scholar
  25. Easterwood TR, Harvey SC (1997) Ribonuclease P RNA: models of the 15/16 bulge from Escherichia coli and the P15 stem loop of Bacillus subtilis. RNA 3:577–585PubMedGoogle Scholar
  26. Gaur RK, Hanne A, Conrad F, Kahle D, Krupp G (1996) Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm. RNA 2:674–681PubMedGoogle Scholar
  27. Giege R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014CrossRefPubMedGoogle Scholar
  28. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857CrossRefPubMedGoogle Scholar
  29. Haas ES, Morse DP, Brown JW, Schmidt FJ, Pace NR (1991) Long-range structure in ribonuclease P RNA. Science 254:853–856CrossRefPubMedGoogle Scholar
  30. Haas ES, Brown JW, Pitulle C, Pace NR (1994) Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc Natl Acad Sci U S A 91:2527–2531CrossRefPubMedGoogle Scholar
  31. Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR (1994) Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J 13:3953–3963PubMedGoogle Scholar
  32. Harris ME, Kazantsev AV, Chen JL, Pace NR (1997) Analysis of the tertiary structure of the ribonuclease P ribozyme–substrate complex by site-specific photoaffinity crosslinking. RNA 3:561–576PubMedGoogle Scholar
  33. Hartmann RK, Heinrich J, Schlegl J, Schuster H (1995) Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc Natl Acad Sci U S A 92:5822–5826CrossRefPubMedGoogle Scholar
  34. Heilek G, Noller H (1996a) Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II). RNA 2:597–602PubMedGoogle Scholar
  35. Heilek G, Noller H (1996b) Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 272:1659–1662CrossRefPubMedGoogle Scholar
  36. Heilek GM, Marusak R, Meares CF, Noller HF (1995) Directed hydroxyl radical probing of 16 S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A 92:1113–1116CrossRefPubMedGoogle Scholar
  37. Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474CrossRefPubMedGoogle Scholar
  38. Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102:13392–13397CrossRefPubMedGoogle Scholar
  39. Kikovska E, Svard SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 104:2062–2067CrossRefPubMedGoogle Scholar
  40. Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194CrossRefPubMedGoogle Scholar
  41. Kleywegt GJ, Jones TA (1994) A super position. CCP4/ESF-EACBM Newsletter Protein Crystallogr 31:9–14Google Scholar
  42. Krasilnikov AS, Mondragon A (2003) On the occurrence of the T-loop RNA folding motif in large RNA molecules. RNA 9:640–643CrossRefPubMedGoogle Scholar
  43. Krasilnikov AS, Yang X, Pan T, Mondragon A (2003) Crystal structure of the specificity domain of ribonuclease P. Nature 421:760–764CrossRefPubMedGoogle Scholar
  44. Krasilnikov AS, Xiao Y, Pan T, Mondragon A (2004) Basis for structural diversity in homologous RNAs. Science 306:104–107CrossRefPubMedGoogle Scholar
  45. Kurz JC, Niranjanakumari S, Fierke CA (1998) Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 37:2393–2400CrossRefPubMedGoogle Scholar
  46. LaGrandeur TE, Huttenhofer A, Noller HF, Pace NR (1994) Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 13:3945–3952PubMedGoogle Scholar
  47. Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531CrossRefPubMedGoogle Scholar
  48. Lescoute A, Westhof E (2006) The A-minor motifs in the decoding recognition process. Biochimie 88:993–999CrossRefPubMedGoogle Scholar
  49. Li Z, Deutscher MP (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86:503–512CrossRefPubMedGoogle Scholar
  50. Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2:551–563PubMedGoogle Scholar
  51. Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36:6317–6325CrossRefPubMedGoogle Scholar
  52. Loria A, Niranjanakumari S, Fierke CA, Pan T (1998) Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37:15466–15473CrossRefPubMedGoogle Scholar
  53. Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R (1991) The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253:1255–1260CrossRefPubMedGoogle Scholar
  54. Major F, Gautheret D, Cedergren R (1993) Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. Proc Natl Acad Sci U S A 90:9408–9412CrossRefPubMedGoogle Scholar
  55. Malhotra A, Harvey SC (1994) A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J Mol Biol 240:308–340CrossRefPubMedGoogle Scholar
  56. Marquez SM, Chen JL, Evans D, Pace NR (2006) Structure and function of eukaryotic Ribonuclease P RNA. Mol Cell 24:445–456CrossRefPubMedGoogle Scholar
  57. Masquida B, Westhof E (2005) Modeling the architecture of structured RNAs within a modular and hierarchical framework. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry. Wiley VCH Verlag Gmbh & Co, Weinheim, pp 536–545CrossRefGoogle Scholar
  58. Massire C, Westhof E (1998) MANIP: an interactive tool for modelling RNA. J Mol Graph Model 16:197–205, 255–257PubMedGoogle Scholar
  59. Massire C, Jaeger L, Westhof E (1997) Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNA. RNA 3:553–556PubMedGoogle Scholar
  60. Massire C, Jaeger L, Westhof E (1998) Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol 279:773–793CrossRefPubMedGoogle Scholar
  61. Matsuhashi M, Dietrich CP, Strominger JL (1965) Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci U S A 54:587–594CrossRefPubMedGoogle Scholar
  62. Michel F, Costa M, Westhof E (2009) The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 34:189–199CrossRefPubMedGoogle Scholar
  63. Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217CrossRefPubMedGoogle Scholar
  64. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A 98:4899–4903CrossRefPubMedGoogle Scholar
  65. Nolan JM, Burke DH, Pace NR (1993) Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science 261:762–765CrossRefPubMedGoogle Scholar
  66. Odell L, Huang V, Jakacka M, Pan T (1998) Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res 26:3717–3723CrossRefPubMedGoogle Scholar
  67. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30 S ribosomal subunit. Science 292:897–902CrossRefPubMedGoogle Scholar
  68. Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34:902–909CrossRefPubMedGoogle Scholar
  69. Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221:1–5CrossRefPubMedGoogle Scholar
  70. Rangan P, Masquida B, Westhof E, Woodson SA (2004) Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. J Mol Biol 339:41–51CrossRefPubMedGoogle Scholar
  71. Rox C, Feltens R, Pfeiffer T, Hartmann RK (2002) Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 315:551–560CrossRefPubMedGoogle Scholar
  72. Roy H, Becker HD, Mazauric MH, Kern D (2007) Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 35:3420–3430CrossRefPubMedGoogle Scholar
  73. Siew D, Zahler NH, Cassano AG, Strobel SA, Harris ME (1999) Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Biochemistry 38:1873–1883CrossRefPubMedGoogle Scholar
  74. Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115CrossRefPubMedGoogle Scholar
  75. Stams T, Niranjanakumari S, Fierke CA, Christianson DW (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755CrossRefPubMedGoogle Scholar
  76. Stathopoulos C, Tekos A, Zarkadis IK, Drainas D (2001) Extensive deproteinization of Dictyostelium discoideum RNase P reveals a new catalytic activity. Eur J Biochem 268:2134–2140CrossRefPubMedGoogle Scholar
  77. Talbot SJ, Altman S (1994) Gel retardation analysis of the interaction between C5 protein and M1 RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. Biochemistry 33:1399–1405CrossRefPubMedGoogle Scholar
  78. Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragon A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587CrossRefPubMedGoogle Scholar
  79. Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V (2003) Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 325:661–675CrossRefPubMedGoogle Scholar
  80. Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure (Camb) 9:647–658CrossRefGoogle Scholar
  81. Vioque A, Arnez J, Altman S (1988) Protein–RNA interactions in the RNase P holoenzyme from Escherichia coli. J Mol Biol 202:835–848CrossRefPubMedGoogle Scholar
  82. Westhof E, Altman S (1994) Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli. Proc Natl Acad Sci U S A 91:5133–5137CrossRefPubMedGoogle Scholar
  83. Westhof E, Wesolowski D, Altman S (1996) Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)–EDTA reagent. J Mol Biol 258:600–613CrossRefPubMedGoogle Scholar
  84. Zarrinkar PP, Wang J, Williamson JR (1996) Slow folding kinetics of RNase P RNA. RNA 2:564–573PubMedGoogle Scholar
  85. Forster AC and Altman S (1990) External guide sequences for an RNA enzyme. Science, 249:783–786CrossRefPubMedGoogle Scholar
  86. Kirsebom LA and Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. Embo J, 13:4870–4876PubMedGoogle Scholar
  87. Massire C and Westhof E (1998) MANIP: an interactive tool for modelling RNA. J Mol Graph Model, 16:197–205, 255–197PubMedGoogle Scholar
  88. Oh BK and Pace NR (1994) Interaction of the 3’-end of tRNA with ribonuclease P RNA. Nucleic Acids Res, 22:4087–4094CrossRefPubMedGoogle Scholar
  89. Svärd SG, Kagardt U and Kirsebom LA (1996) Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. Rna, 2:463–472PubMedGoogle Scholar
  90. Kirsebom LA and Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. Embo J, 13:4870–4876PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Benoît Masquida
    • 1
  • Fabrice Jossinet
    • 1
  • Eric Westhof
    • 1
  1. 1.Architecture et Réactivité de l’ARNUniversité de Strasbourg, IBMC, CNRSStrasbourgFrance

Personalised recommendations