The Evolution of RNase P and Its RNA

  • J. Christopher Ellis
  • James W. Brown
Part of the Protein Reviews book series (PRON, volume 10)


RNase P is generally comprised of a single RNA and one or more protein subunits. The RNA is the catalytic subunit, but the protein(s) are also required under physiological conditions for efficient activity. Although there is remarkable sequence and structural diversity of the RNase P RNA, they are all clearly homologous, and a consensus “core” structure can be identified. Type A RNase P RNAs are ancestral in both Bacteria and Archaea, implying that the last common ancestor also contained a type A RNA. However, in the case for the protein subunits of the enzyme, there is no clear homology in either sequence or structure between the single rnpA protein found universally in Bacteria and any of the archaeal or eukaryotic nuclear (eukaryal) proteins, including the four conserved RNase P proteins (Rpp21, Rpp29, Rpp30 and Pop5p) common to these two Domains. The simplest explanation for this difference in proteins is that the RNase P of last common ancestor was an RNA-only enzyme that acquired the rnpA protein in the case of Bacteria and the Rpp21/Rpp29/Rpp30/Pop5p proteins in the archaeal/eukaryal lineage, which was subsequently expanded in the case of the eukaryal enzyme. In this chapter, we will discuss the structural diversity of the RNase P RNA and their associated proteins in Bacteria, Archaea, and Eukaryotes. Special cases of evolutionary diversity within the domains and future directions will be given special attention.


Protein Subunit Substrate Recognition Human RNase Pyrococcus Horikoshii Bacterial RNase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.


  1. Altman S, Wesolowski D et al (2005) RNase P cleaves transient structures in some riboswitches. Proc Natl Acad Sci U S A 102(32):11284–11289CrossRefPubMedGoogle Scholar
  2. Bai Y, Trang P et al (2008) Effective inhibition in animals of viral pathogenesis by a ribozyme derived from RNase P catalytic RNA. Proc Natl Acad Sci U S A 105(31):10919–10924CrossRefPubMedGoogle Scholar
  3. Ban N, Nissen P et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920CrossRefPubMedGoogle Scholar
  4. Brown JW (1999) The Ribonuclease P database. Nucleic Acids Res 27(1):314CrossRefPubMedGoogle Scholar
  5. Brown JW, Haas ES (1995) Ribonuclease P structure and function in Archaea. Mol Biol Rep 22(2–3):131–134PubMedGoogle Scholar
  6. Brown JW, Haas ES et al (1991) Phylogenetic analysis and evolution of RNase P RNA in proteobacteria. J Bacteriol 173(12):3855–3863PubMedGoogle Scholar
  7. Brown JW, Haas ES et al (1993) Characterization of ribonuclease P RNAs from thermophilic bacteria. Nucleic Acids Res 21(3):671–679CrossRefPubMedGoogle Scholar
  8. Brown JW, Nolan JM et al (1996) Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci U S A 93(7):3001–3006CrossRefPubMedGoogle Scholar
  9. Buck AH, Dalby AB et al (2005) Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 24(19):3360–3368CrossRefPubMedGoogle Scholar
  10. Chang DD, Clayton DA (1987) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J 6(2):409–417PubMedGoogle Scholar
  11. Chen JL, Pace NR (1997) Identification of a universally conserved core of ribonuclase P RNA. RNA 3:561–576PubMedGoogle Scholar
  12. Christian EL, Harris ME (1999) The track of the pre-tRNA 5′ leader in the ribonuclease P ribozyme–substrate complex. Biochemistry 38(39):12629–12638CrossRefPubMedGoogle Scholar
  13. Coughlin DJ, Pleiss JA et al (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci U S A 105(34):12218–12223CrossRefPubMedGoogle Scholar
  14. Di Giulio M (2006) Nanoarchaeum equitans is a living fossil. J Theor Biol 242:257–260CrossRefPubMedGoogle Scholar
  15. Feltens R, Gossringer M et al (2003) An unusual mechanism of bacterial gene expression revealed for the RNase P protein of Thermus strains. Proc Natl Acad Sci U S A 100(10):5724–5729CrossRefPubMedGoogle Scholar
  16. Forster AC, Altman S (1990) Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell 62(3):407–409CrossRefPubMedGoogle Scholar
  17. Frank DN, Adamidi C et al (2000) Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. RNA 6(12):1895–1904CrossRefPubMedGoogle Scholar
  18. Fukuhara H, Kifusa M et al (2006) A fifth protein subunit Ph1496p elevates the optimum temperature for the ribonuclease P activity from Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 343(3):956–964CrossRefPubMedGoogle Scholar
  19. Gill T, Cai T et al (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24(3):945–953CrossRefPubMedGoogle Scholar
  20. Gimple O, Schon A (2001) In vitro and in vivo processing of cyanelle tmRNA by RNase P. Biol Chem 382(10):1421–1429CrossRefPubMedGoogle Scholar
  21. Gösringer M, Hartmann R (2007) Function of heterologous and truncated RNase P proteins in Bacillus subtilis. Mol Microbiol 66:801–813CrossRefPubMedGoogle Scholar
  22. Haas ES, Brown JW (1998) Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Res 26(18):4093–4099Google Scholar
  23. Haas ES, Banta AB et al (1996) Structure and evolution of ribonuclease P RNA in Gram-positive bacteria. Nucleic Acids Res 24(23):4775–4782CrossRefPubMedGoogle Scholar
  24. Hall TA, Brown JW (2002) Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA 8(3):296–306CrossRefPubMedGoogle Scholar
  25. Hall TA, Brown JW (2004) Interactions between RNase P protein subunits in archaea. Archaea 1(4):247–254CrossRefPubMedGoogle Scholar
  26. Hansen FG, Hansen EB et al (1982) The nucleotide sequence of the dnaA gene promoter and of the adjacent rpmH gene, coding for the ribosomal protein L34, of Escherichia coli. EMBO J 1(9):1043–1048PubMedGoogle Scholar
  27. Hansen FG, Hansen EB et al (1985) Physical mapping and nucleotide sequence of the rnpA gene that encodes the protein component of ribonuclease P in Escherichia coli. Gene 38(1–3):85–93CrossRefPubMedGoogle Scholar
  28. Harris JK, Haas ES et al (2001) New insight into RNase P RNA structure from comparative analysis of the archaeal RNA. RNA 7(2):220–232CrossRefPubMedGoogle Scholar
  29. Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19(10):561–569CrossRefPubMedGoogle Scholar
  30. Holzmann J, Frank P et al (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135(3):462–474CrossRefPubMedGoogle Scholar
  31. Honda T, Kakuta Y et al (2008) Structure of an archaeal homolog of the human protein complex Rpp 21-Rpp29 that is a key core component for the assembly of active ribonuclease P. J Mol Biol 384(3):652–662CrossRefPubMedGoogle Scholar
  32. Hori Y, Tanaka T et al (2000) The catalytic RNA of RNase P from Escherichia coli cleaves Drosophila 2 S ribosomal RNA in vitro: a new type of naturally occurring substrate for the ribozyme. FEBS Lett 472(2–3):187–190CrossRefPubMedGoogle Scholar
  33. Houser-Scott F, Xiao S et al (2002) Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci U S A 99(5):2684–2689CrossRefPubMedGoogle Scholar
  34. James BD, Olsen GJ et al (1988) The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 52(1):19–26CrossRefPubMedGoogle Scholar
  35. Kakuta Y, Ishimatsu I et al (2005) Crystal structure of a ribonuclease P protein Ph1601p from Pyrococcus horikoshii OT3: an archaeal homologof human nuclear ribonuclease P protein Rpp 21. Biochemistry 44(36):12086–12093CrossRefPubMedGoogle Scholar
  36. Kawano S, Nakashima T et al (2006) Crystal structure of protein Ph1481p in complex with protein Ph1877p of archaeal RNase P from Pyrococcus horikoshii OT3: implication of dimer formation of the holoenzyme. J Mol Biol 357(2):583–591CrossRefPubMedGoogle Scholar
  37. Kazakov S, Altman S (1991) Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A 88(20):9193–9197CrossRefPubMedGoogle Scholar
  38. Kazantsev AV, Krivenko AA et al (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 100(13):7497–7502CrossRefPubMedGoogle Scholar
  39. Kazantsev AV, Krivenko AA et al (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102(38):13392–13397CrossRefPubMedGoogle Scholar
  40. Kifusa M, Fukuhara H et al (2005) Protein–protein interactions in the subunits of ribonuclease P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biosci Biotechnol Biochem 69(6):1209–1212CrossRefPubMedGoogle Scholar
  41. Kirsebom LA, Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J. 13:4870–4876PubMedGoogle Scholar
  42. Kouzuma Y, Mizoguchi M et al (2003) Reconstitution of archaeal ribonuclease P from RNA and four protein components. Biochem Biophys Res Commun 306(3):666–673CrossRefPubMedGoogle Scholar
  43. Kuhn JF, Tran EJ et al (2002) Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5 kD/Snu13p snoRNP core protein. Nucleic Acids Res 30(4):931–941CrossRefPubMedGoogle Scholar
  44. Li Y, Altman S (2002) Partial reconstitution of human RNase P in HeLa cells between its RNA subunit with an affinity tag and the intact protein components. Nucleic Acids Res 30(17):3706–3711CrossRefPubMedGoogle Scholar
  45. Li Y, Altman S (2004) In search of RNase P RNA from microbial genomes. RNA 10(10):1533–1540CrossRefPubMedGoogle Scholar
  46. Li X, Frank DN et al (2002) Phylogenetic analysis of the structure of RNase MRP RNA in yeasts. RNA 8(6):740–751CrossRefPubMedGoogle Scholar
  47. Lombo TB, Kaberdin VR (2008) RNA processing in Aquifex aeolicus involves RNase E/G and an RNase P-like activity. Biochem Biophys Res Commun 366(2):457–463CrossRefPubMedGoogle Scholar
  48. Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2(6):551–563PubMedGoogle Scholar
  49. Marszalkowski M, Willkomm DK et al (2008) 5′-end maturation of tRNA in Aquifex aeolicus. Biol Chem 389(4):395–403CrossRefPubMedGoogle Scholar
  50. Massire C, Jaeger L, Westhof E (1998) Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol 279:773–793CrossRefPubMedGoogle Scholar
  51. Morales MJ, Dang YL et al (1992) A 105-kDa protein is required for yeast mitochondrial RNase P activity. Proc Natl Acad Sci U S A 89(20):9875–9879CrossRefPubMedGoogle Scholar
  52. Nolan JM, Burke DH, Pace NR (1993) Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science 261:762–765CrossRefPubMedGoogle Scholar
  53. Numata T, Ishimatsu I et al (2004) Crystal structure of archaeal ribonuclease P protein Ph1771p from Pyrococcus horikoshii OT3: an archaeal homolog of eukaryotic ribonuclease P protein Rpp 29. RNA 10(9):1423–1432CrossRefPubMedGoogle Scholar
  54. Ogasawara N, Moriya S et al (1985) Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli. EMBO J 4(12):3345–3350PubMedGoogle Scholar
  55. Panagiotidis CA, Drainas D et al (1992) Modulation of ribonuclease P expression in Escherichia coli by polyamines. Int J Biochem 24(10):1625–1631CrossRefPubMedGoogle Scholar
  56. Pannucci JA, Haas ES et al (1999) RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci U S A 96(14):7803–7808CrossRefPubMedGoogle Scholar
  57. Perederina A, Esakova O et al (2007) Specific binding of a Pop6/Pop7 heterodimer to the P3 stem of the yeast RNase MRP and RNase P RNAs. RNA 13(10):1648–1655CrossRefPubMedGoogle Scholar
  58. Randau L, Calvin K, (2005) The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci U S A. 102(50):17934-17939CrossRefPubMedGoogle Scholar
  59. Randau L, Munch R et al (2005b) Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5′- and 3′-halves. Nature 433(7025):537–541CrossRefPubMedGoogle Scholar
  60. Randau L, Schroder I et al (2008) Life without RNase P. Nature 453(7191):120–123CrossRefPubMedGoogle Scholar
  61. Reyes-Darias JA, Sanchez-Luque FJ et al (2008) Inhibition of HIV-1 replication by RNA-based strategies. Curr HIV Res 6(6):500–514CrossRefPubMedGoogle Scholar
  62. Rozhdestvensky TS, Tang TH et al (2003) Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31(3):869–877CrossRefPubMedGoogle Scholar
  63. Salazar L, Fsihi H et al (1996) Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol Microbiol 20(2):283–293CrossRefPubMedGoogle Scholar
  64. Seif E, Altman S (2008) RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. RNA 14(6):1237–1243CrossRefPubMedGoogle Scholar
  65. Siegel RW, Banta AB, Haas ES, Brown JW, Pace NR (1996) Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA. RNA 2:452–462PubMedGoogle Scholar
  66. Spitzfaden C, Nicholson N et al (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295(1):105–115CrossRefPubMedGoogle Scholar
  67. Srisawat C, Houser-Scott F et al (2002) An active precursor in assembly of yeast nuclear ribonuclease P. RNA 8(10):1348–1360CrossRefPubMedGoogle Scholar
  68. Stams T, Niranjanakumari S et al (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280(5364):752–755CrossRefPubMedGoogle Scholar
  69. Stribinskis V, Ramos KS (2007) Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res 35(4):1301–1311CrossRefPubMedGoogle Scholar
  70. Stribinskis V, Gao GJ (2001) Rpm2, the protein subunit of mitochondrial RNase P in Saccharomyces cerevisiae, also has a role in the translation of mitochondrially encoded subunits of cytochrome c oxidase. Genetics 158(2):573-585PubMedGoogle Scholar
  71. Stribinskis V, Gao GJ et al (2001b) Rpm2p: separate domains promote tRNA and Rpm1r maturation in Saccharomyces cerevisiae mitochondria. Nucleic Acids Res 29(17):3631–3637CrossRefPubMedGoogle Scholar
  72. Stribinskis V, Heyman HC et al (2005) Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol Cell Biol 25(15):6546–6558CrossRefPubMedGoogle Scholar
  73. Svard SG, Kirsebom LA (1992) Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site. J Mol Biol 227(4):1019–1031CrossRefPubMedGoogle Scholar
  74. Svard SG, Kagardt U et al (1996) Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. RNA 2(5):463–472PubMedGoogle Scholar
  75. Takagi H, Watanabe M et al (2004) Crystal structure of the ribonuclease P protein Ph1877p from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 319(3):787–794CrossRefPubMedGoogle Scholar
  76. Torres-Larios A, Swinger KK et al (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437(7058):584–587CrossRefPubMedGoogle Scholar
  77. Tous C, Vega-Palas MA et al (2001) Conditional expression of RNase P in the cyanobacterium Synechocystis sp. PCC6803 allows detection of precursor RNAs. Insight in the in vivo maturation pathway of transfer and other stable RNAs. J Biol Chem 276(31):29059–29066CrossRefPubMedGoogle Scholar
  78. Walker SC, Engelke DR (2008) A protein-only RNase P in human mitochondria. Cell 135(3):412–414CrossRefPubMedGoogle Scholar
  79. Walker SC, Aspinall TV, Gordon JM, Avis JM (2005) Probing the structure of Saccharomyces cerevisiae RNase MRP. Biochem Soc Trans 33:479–481CrossRefPubMedGoogle Scholar
  80. Waters E, Hohn MJ et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A 100(22):12984–12988CrossRefPubMedGoogle Scholar
  81. Waugh DS, Pace NR (1990) Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria. J Bacteriol 172(11):6316–6322PubMedGoogle Scholar
  82. Waugh DS, Green CJ, Pace NR (1989) The design and catalytic properties of a simplified ribonuclease P RNA. Science 244:1569–1571CrossRefPubMedGoogle Scholar
  83. Wegmann U et al (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270CrossRefPubMedGoogle Scholar
  84. Wise CA, Martin NC (1991) Dramatic size variation of yeast mictochondrial RNAs suggests that RNase P RNAs can be quite small. J Biol Chem 266:19154–19157PubMedGoogle Scholar
  85. Guerrier-Takada C, Gardiner K et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3):849–857CrossRefPubMedGoogle Scholar
  86. Lowe T, Lai L, Chan P, Cozen A, Bernick D, Brown JW, and Gopalan V. Discovery of the Elusive Pyrobaculum RNase P; An Unexpected Form of an Ancient RNA. Nature (unpublished data)Google Scholar
  87. Niranjanakumari N, Stams T, et al (1998) Protein component of ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95(26): 15212–15217CrossRefPubMedGoogle Scholar
  88. Westhof E, Wesolowski D et al (1996) Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)-EDTA reagent. J Mol Biol 258(4):600–613CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MicrobiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations