Ribonuclease P pp 235-256 | Cite as

RNase P as a Drug Target

  • Dagmar K. Willkomm
  • Patrick Pfeffer
  • Klaus Reuter
  • Gerhard Klebe
  • Roland K. Hartmann
Part of the Protein Reviews book series (PRON, volume 10)


The indispensability of RNase P for cell survival and its distinct architecture in Bacteria and Eukarya qualify this ribonucleoprotein enzyme as a potential drug target, although natural inhibitors of bacterial RNase P have not yet been identified. We report on the various attempts pursued so far to explore RNase P as a drug target. After an introduction into the topic and a brief historic synopsis, we will discuss antisense-based strategies, will detail recent advancements with respect to aminoglycoside-arginine conjugates, and will describe in silico-based high-throughput screening procedures that target the bacterial RNase P protein. The reader will be further updated on low molecular weight compounds that inhibit the activity of RNase P from the slime mold Dictyostelium, an amoebic eukaryote that might serve as a model system for some human pathogens. The chapter will finally be closed by mentioning ligands that bind to tRNA substrates as well as the macrolides which were reported to activate bacterial RNase P.


Antisense Inhibitor Peptidyl Transferase Central Cleft Bacterial RNase Eukaryotic Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berchanski A, Lapidot A (2008) Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates. Bioconjug Chem 19:1896–1906CrossRefPubMedGoogle Scholar
  2. Bichenkova EV, Sadat-Ebrahimi SE, Wilton AN et al (1998) Strong, specific, reversible binding ligands for transfer RNA: comparison by fluorescence and NMR spectroscopies with distamycin binding for a new structural class of ligand. Nucleosides Nucleotides Nucleic Acids 17:1651–1665CrossRefGoogle Scholar
  3. Brännvall M, Pettersson BM, Kirsebom LA (2003) Importance of the +73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination. J Mol Biol 325:697–709CrossRefPubMedGoogle Scholar
  4. Childs JL, Poole AW, Turner DH (2003) Inhibition of Escherichia coli RNase P by oligonucleotide directed misfolding of RNA. RNA 9:1437–1445CrossRefPubMedGoogle Scholar
  5. Egholm M, Buchardt O, Christensen L et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568CrossRefPubMedGoogle Scholar
  6. Eubank TD, Biswas R, Jovanovic M et al (2002) Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett 511:107–112CrossRefPubMedGoogle Scholar
  7. Giordano T, Sturgess MA, Rao SJ (2006) Inhibitors of RNase P proteins as antibacterial compounds. Unites States Patent US 7,001,924 B2Google Scholar
  8. Gößringer M, Hartmann RK (2007) Function of heterologous and truncated RNase P proteins in Bacillus subtilis. Mol Microbiol 66:801–813CrossRefGoogle Scholar
  9. Gößringer M, Kretschmer-Kazemi Far R, Hartmann RK (2006) Analysis of RNase P protein (rnpA) expression in Bacillus subtilis utilizing strains with suppressible rnpA expression. J Bacteriol 188:6816–6823CrossRefPubMedGoogle Scholar
  10. Good L, Awasthi SK, Dryselius R et al (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 19:360–364CrossRefPubMedGoogle Scholar
  11. Gruegelsiepe H, Brandt O, Hartmann RK (2006) Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J Biol Chem 281:30613–30620CrossRefPubMedGoogle Scholar
  12. Gruegelsiepe H, Willkomm DK, Goudinakis O et al (2003) Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects. Chembiochem 4:1049–1056CrossRefPubMedGoogle Scholar
  13. Guo X, Campbell FE, Sun L et al (2006) RNA-dependent folding and stabilization of C5 protein during assembly of the E. coli RNase P holoenzyme. J Mol Biol 360:190–203CrossRefPubMedGoogle Scholar
  14. Henkels CH, Kurz JC, Fierke CA et al (2001) Linked folding and anion binding of the Bacillus subtilis ribonuclease P protein. Biochemistry 40:2777–2789CrossRefPubMedGoogle Scholar
  15. Hermann T, Westhof E (1998) Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J Mol Biol 276:903–912CrossRefPubMedGoogle Scholar
  16. Holzmann J, Frank P, Loffler E et al (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474CrossRefPubMedGoogle Scholar
  17. Hori Y, Bichenkova EV, Wilton AN et al (2001) Synthetic inhibitors of the processing of pretransfer RNA by the ribonuclease P ribozyme: enzyme inhibitors which act by binding to substrate. Biochemistry 40:603–608CrossRefPubMedGoogle Scholar
  18. Hori Y, Rogert MC, Tanaka T et al (2005) Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. Biochim Biophys Acta 1730:47–55PubMedGoogle Scholar
  19. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182CrossRefPubMedGoogle Scholar
  20. Jakobsen MR, Damgaard CK, Andersen ES et al (2004) A genomic selection strategy to identify accessible and dimerization blocking targets in the 5′-UTR of HIV-1 RNA. Nucleic Acids Res 32:e67CrossRefPubMedGoogle Scholar
  21. Jarrous N (2002) Human ribonuclease P: subunits, function, and intranuclear localization. RNA 8:1–7CrossRefPubMedGoogle Scholar
  22. Jarrous N, Altman S (2001) Human ribonuclease P. Methods Enzymol 342:93–100CrossRefPubMedGoogle Scholar
  23. Kalavrizioti D, Vourekas A, Tekos A et al (2003) Kinetics of inhibition of ribonuclease P activity by peptidyltransferase inhibitors. Effect of antibiotics on RNase P. Mol Biol Rep 30:9–14CrossRefPubMedGoogle Scholar
  24. Kawamoto SA, Sudhahar CG, Hatfield CL et al (2008) Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucleic Acids Res 36:697–704CrossRefPubMedGoogle Scholar
  25. Kazantsev AV, Krivenko AA, Harrington DJ et al (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 100:7497–7502CrossRefPubMedGoogle Scholar
  26. Kazantsev AV, Krivenko AA, Harrington DJ et al (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102:13392–13397CrossRefPubMedGoogle Scholar
  27. Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194CrossRefPubMedGoogle Scholar
  28. Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683CrossRefPubMedGoogle Scholar
  29. Kretschmer-Kazemi Far R, Nedbal W, Sczakiel G (2001) Concepts to automate the theoretical design of effective antisense oligonucleotides. Bioinformatics 17:1058–1061CrossRefGoogle Scholar
  30. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644CrossRefPubMedGoogle Scholar
  31. Litovchick A, Lapidot A, Eisenstein M et al (2001) Neomycin B-arginine conjugate, a novel HIV-1 Tat antagonist: synthesis and anti-HIV activities. Biochemistry 40:15612–15623CrossRefPubMedGoogle Scholar
  32. Massire C, Jaeger L, Westhof E (1998) Derivation of the three-dimensional aruchitecture of bacterial ribonuclease P RNAs from comparaive sequence analysis. J Mol Biol 279:773–793CrossRefPubMedGoogle Scholar
  33. Mikkelsen NE, Brannvall M, Virtanen A et al (1999) Inhibition of RNase P RNA cleavage by aminoglycosides. Proc Natl Acad Sci U S A 96:6155–6160CrossRefPubMedGoogle Scholar
  34. Mikkelsen NE, Johansson K, Virtanen A et al (2001) Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat Struct Biol 8:510–514CrossRefPubMedGoogle Scholar
  35. Nekhotiaeva N, Awasthi SK, Nielsen PE et al (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10:652–659CrossRefPubMedGoogle Scholar
  36. Niranjanakumari S, Day-Storms JJ, Ahmed M et al (2007) Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA 13:521–535CrossRefPubMedGoogle Scholar
  37. Niranjanakumari S, Stams T, Crary SM et al (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217CrossRefPubMedGoogle Scholar
  38. Nulf CJ, Corey D (2004) Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res 32:3792–3798 Erratum in: Nucleic Acids Res 2004, 32:4954CrossRefPubMedGoogle Scholar
  39. Papadimou E, Georgiou S, Tsambaos D et al (1998) Inhibition of ribonuclease P activity by retinoids. J Biol Chem 273:24375–24378CrossRefPubMedGoogle Scholar
  40. Papadimou E, Monastirli A, Stathopoulos C et al (2000a) Modulation of ribonuclease P activity by calcipotriol. Eur J Biochem 267:1173–1177CrossRefPubMedGoogle Scholar
  41. Papadimou E, Monastirli A, Tsambaos D et al (2000b) Additive inhibitory effect of calcipotriol and anthralin on ribonuclease P activity. Biochem Pharmacol 60:91–94CrossRefPubMedGoogle Scholar
  42. Papadimou E, Monastirli A, Tsambaos D et al (2000c) Inhibitory effects of arotinoids on tRNA biogenesis. Skin Pharmacol Appl Skin Physiol 13:345–351PubMedGoogle Scholar
  43. Papadimou E, Pavlidou D, Seraphin B et al (2003) Retinoids inhibit human epidermal keratinocyte RNase P activity. Biol Chem 384:457–462CrossRefPubMedGoogle Scholar
  44. Pascual A, Vioque A (1999) Substrate binding and catalysis by ribonuclease P from cyanobacteria and Escherichia coli are affected differently by the 3′ terminal CCA in tRNA precursors. Proc Natl Acad Sci U S A 96:6672–6677CrossRefPubMedGoogle Scholar
  45. Patzel V, Steidl U, Kronenwett R et al (1999) A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 27:4328–4334CrossRefPubMedGoogle Scholar
  46. Schedl P, Primakoff P, Roberts J (1974) Processing of E. coli tRNA precursors. Brookhaven Symp Biol 26:53–76Google Scholar
  47. Singh SK, Wengel J (1998) Universality of LNA-mediated high-affinity nucleic acid recognition. Chem Commun 12:1247–1248Google Scholar
  48. Spitzfaden C, Nicholson N, Jones JJ et al (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115CrossRefPubMedGoogle Scholar
  49. Stams T, Niranjanakumari S, Fierke CA (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755CrossRefPubMedGoogle Scholar
  50. Stathopoulos C, Tsagla A, Tekos A et al (2000) Effect of peptidyltransferase inhibitors on ribonuclease P activity from Dictyostelium discoideum. Effect of antibiotics on RNase P. Mol Biol Rep 27:107–111CrossRefPubMedGoogle Scholar
  51. Tekos A, Prodromaki E, Papadimou E et al (2003) Aminoglycosides suppress tRNA processing in human epidermal keratinocytes in vitro. Skin Pharmacol Appl Skin Physiol 16:252–258PubMedGoogle Scholar
  52. Tekos A, Stathopoulos C, Tsambaos D et al (2004) RNase P: a promising molecular target for the development of new drugs. Curr Med Chem 11:2979–2989PubMedGoogle Scholar
  53. Tekos A, Tsagla A, Stathopoulos C et al (2000) Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett 485:71–75CrossRefPubMedGoogle Scholar
  54. Tor Y (2006) The ribosomal A-site as an inspiration for the design of RNA binders. Biochimie 88:1045–1051CrossRefPubMedGoogle Scholar
  55. Torres-Larios A, Swinger KK, Krasilnikov AS et al (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587CrossRefPubMedGoogle Scholar
  56. Toumpeki C, Vourekas A, Kalavrizioti D et al (2008) Activation of bacterial ribonuclease P by macrolides. Biochemistry 47:4112–4118CrossRefPubMedGoogle Scholar
  57. Tsai HY, Masquida B, Biswas R et al (2003) Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 325:661–675CrossRefPubMedGoogle Scholar
  58. Velec HF, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48:6296–6303CrossRefPubMedGoogle Scholar
  59. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623CrossRefPubMedGoogle Scholar
  60. Vioque A (1989) Protein synthesis inhibitors and catalytic RNA. Effect of puromycin on tRNA precursor processing by the RNA component of Escherichia coli RNase P. FEBS Lett 246:137–139CrossRefPubMedGoogle Scholar
  61. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638CrossRefPubMedGoogle Scholar
  62. Walter F, Vicens Q, Westhof E (1999) Aminoglycoside-RNA interactions. Curr Opin Chem Biol 3:694–704CrossRefPubMedGoogle Scholar
  63. Waugh DS, Pace NR (1990) Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria. J Bacteriol 172:6316–6322PubMedGoogle Scholar
  64. Wegscheid B, Condon C, Hartmann RK (2006) Type A and B RNase P RNAs are interchangeable in vivo despite substantial biophysical differences. EMBO Rep 7:411–417PubMedGoogle Scholar
  65. Wegscheid B, Hartmann RK (2006) The precursor tRNA 3′-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo. RNA 12:2135–2148CrossRefPubMedGoogle Scholar
  66. Willkomm DK, Gruegelsiepe H, Goudinakis O et al (2003) Evaluation of bacterial RNase P RNA as a drug target. Chembiochem 4:1041–1048CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dagmar K. Willkomm
    • 1
  • Patrick Pfeffer
    • 1
  • Klaus Reuter
    • 1
  • Gerhard Klebe
    • 1
  • Roland K. Hartmann
    • 1
  1. 1.Institut für Pharmazeutische Chemie, Philipps-Universität MarburgMarburgGermany

Personalised recommendations