Advertisement

Ribonuclease P pp 223-234 | Cite as

Human RNase P and Transcription

  • Nayef Jarrous
  • Robert Reiner
  • Yana Dehtiar
Chapter
Part of the Protein Reviews book series (PRON, volume 10)

Abstract

Human nuclear RNase P has been initially characterized by virtue of its ability to process the 5′ leader sequence of precursor tRNA. This ribonucleoprotein complex consists of H1 RNA subunit and at least ten distinct protein components. However, recent findings reveal that RNase P has a role in transcription by RNA polymerase I (Pol I) and Pol III. RNase P associates with these two polymerases, binds to chromatin of rDNA, 5S rRNA and tRNA genes, and determines the transcriptional output of these polymerases in the nucleus. The molecular mechanism(s) by which RNase P acts on transcription are being investigated. This essay summarizes some aspects of old and new functions of this remarkable ribonucleoprotein.

Keywords

tRNA Gene Protein Subunit Active RNase Human RNase External Guide Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research is supported by the United States–Israel Binational Science Foundation (grant no. 2005/009) and the Israel Science Foundation (grant no. 673/06).

References

  1. Alifano P, Rivellini F, Piscitelli C et al (1994) Ribonuclease E provides substrates for ribonuclease P-dependent processing of a polycistronic mRNA. Genes Dev 8:3021–3031CrossRefPubMedGoogle Scholar
  2. Aravind L, Iyer LM, Anantharaman V (2003) The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 4:R64CrossRefPubMedGoogle Scholar
  3. Baillat D, Hakimi MA, Näär AM et al (2005) Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123:265–276CrossRefPubMedGoogle Scholar
  4. Bartkiewicz M, Gold H, Altman S (1989) Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. Genes Dev 3:488–499CrossRefPubMedGoogle Scholar
  5. Bothwell AL, Altman S (1975) Partial purification and properties of an endoribonuclease isolated from human KB cells. J Biol Chem 250:1451–1459PubMedGoogle Scholar
  6. Chamberlain JR, Lee Y, Lane WS et al (1998) Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 12:1678–1690CrossRefPubMedGoogle Scholar
  7. Chen D, Huang S (2001) Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J Cell Biol 153:169–176CrossRefPubMedGoogle Scholar
  8. Clayton DA (2001) A big development for a small RNA. Nature 410:29–31CrossRefPubMedGoogle Scholar
  9. Clemente-Blanco A, Mayán-Santos M, Schneider DA et al (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222CrossRefPubMedGoogle Scholar
  10. Cohen A, Reiner R, Jarrous N (2003) Alterations in the intracellular level of a protein subunit of human RNase P affect processing of tRNA precursors. Nucleic Acids Res 31:4836–4846CrossRefPubMedGoogle Scholar
  11. Coughlin DJ, Pleiss JA, Walker SC et al (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci USA 105:12218–12223CrossRefPubMedGoogle Scholar
  12. Donze D, Kamakaka RT (2001) RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20:520–531CrossRefPubMedGoogle Scholar
  13. Dundr M, Hoffmann-Rohrer U, Hu Q et al (2002) A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–1626CrossRefPubMedGoogle Scholar
  14. Eder PS, Kekuda R, Stolc V et al (1997) Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc Natl Acad Sci USA 94:1101–1106CrossRefPubMedGoogle Scholar
  15. Ellis JC, Barnes J, Brown JW (2007) Is Alba an RNase P subunit? RNA Biol 4:169–172Google Scholar
  16. Frank DN, Adamidi C, Ehringer MA et al (2000) Phylogenetic-comparative analysis of the eukaryal ribonuclease P RNA. RNA 6:1895–1904CrossRefPubMedGoogle Scholar
  17. Gorski SA, Snyder SK, John S et al (2008) Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell 30:486–497CrossRefPubMedGoogle Scholar
  18. Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17:1691–1702CrossRefPubMedGoogle Scholar
  19. Guerrier-Takada C, Eder PS, Gopalan V, Altman S (2002) Purification and characterization of Rpp25, an RNA-binding protein subunit of human ribonuclease P. RNA 8:290–295Google Scholar
  20. Hada K, Nakashima T, Osawa T, Shimada H, Kakuta Y, Kimura M (2008) Crystal structure and functional analysis of an archaeal chromatin protein Alba from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biosci Biotechnol Biochem 72:749–758CrossRefPubMedGoogle Scholar
  21. Hall TA, Brown JW (2002) Archaeal RNase P has multiple protein subunits homologous to eukaryotic nuclear RNase P proteins. RNA 8:296–306CrossRefPubMedGoogle Scholar
  22. Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19:561–569CrossRefPubMedGoogle Scholar
  23. Hassan AH, Neely KE, Worman JL (2001) Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell 104:817–827Google Scholar
  24. Holzmann J, Frank P, Löffler E et al (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474CrossRefPubMedGoogle Scholar
  25. Ishiguro A, Kassavetis GA, Geiduschek EP (2002) Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 22:3264–3275CrossRefPubMedGoogle Scholar
  26. Jacobson MR, Cao LG, Taneja K, Singer RH et al (1997) Nuclear domains of the RNA subunit of RNase P. J Cell Sci 110:829–837PubMedGoogle Scholar
  27. Jarrous N, Eder PS, Guerrier-Takada C, Hoog C, Altman S (1998) Autoantigenic properties of some protein subunits of catalytically active complexes of human ribonuclease P. RNA 4:407–417Google Scholar
  28. Jarrous N, and Altman S (2001) Human Ribonuclease P. Methods Enzyml 342:93–100Google Scholar
  29. Jarrous N (2002) Human ribonuclease P: subunits, function, and intranuclear localization. RNA 8:1–7CrossRefPubMedGoogle Scholar
  30. Jarrous N, Reiner R (2007) Human RNase P: a tRNA-processing enzyme and transcription factor. Nucleic Acids Res 35:3519–3524CrossRefPubMedGoogle Scholar
  31. Jarrous N, Wolenski JS, Wesolowski D et al (1999) Localization in the nucleolus and coiled bodies of protein subunits of the ribonucleoprotein ribonuclease P. J Cell Biol 146:559–572CrossRefPubMedGoogle Scholar
  32. Jarrous N, Reiner R, Wesolowski D et al (2001) Function and subnuclear distribution of Rpp 21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA 7:1153–1164CrossRefPubMedGoogle Scholar
  33. Jiang T, Altman S (2001) Protein-protein interactions with subunits of human nuclear RNase P. Proc Natl Acad Sci USA 98:920–925CrossRefPubMedGoogle Scholar
  34. Jiang T, Altman S (2002) A protein subunit of human RNase P, Rpp 14, and its interacting partner, OIP2, have 3′→5′ exoribonuclease activity. Proc Natl Acad Sci USA 99:5295–5300CrossRefPubMedGoogle Scholar
  35. Jiang T, Guerrier-Takada C, Altman S (2001) Protein-RNA interactions in the subunits of human nuclear RNase P. RNA 7:937–941CrossRefPubMedGoogle Scholar
  36. Kikovska E, Svärd SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci USA 104:2062–2067CrossRefPubMedGoogle Scholar
  37. Koski RA, Bothwell AL, Altman S (1976) Identification of a ribonuclease P-like activity from human KB cells. Cell 9:101–116CrossRefPubMedGoogle Scholar
  38. Kovrigina E, Wesolowski D, Altman S (2003) Coordinate inhibition of expression of several genes for protein subunits of human nuclear RNase P. Proc Natl Acad Sci USA 100:1598–1602CrossRefPubMedGoogle Scholar
  39. Li Y, Altman S (2001) A subunit of human nuclear RNase P has ATPase activity. Proc Natl Acad Sci USA 98:441–444CrossRefPubMedGoogle Scholar
  40. Li Y, Altman S (2003) A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci USA 100:13213–13218CrossRefPubMedGoogle Scholar
  41. Lunyak VV (2008) Boundaries. Boundaries...Boundaries??? Curr Opin Cell Biol 20:281–287CrossRefPubMedGoogle Scholar
  42. Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25:1192–1200CrossRefPubMedGoogle Scholar
  43. Lygerou Z, Pluk H, van Venrooij WJ et al (1996) hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins. EMBO J 15:5936–5948PubMedGoogle Scholar
  44. Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509CrossRefPubMedGoogle Scholar
  45. Mann H, Ben-Asouli Y, Schein A, Moussa S. Jarrous N (2003) Eukaryotic RNase P: Role of RNA and protein subunits of a primordial catalytic ribonucleoprotein in RNA-based catalysis. Mol Cell 12:925–935Google Scholar
  46. Marquez SM, Chen JL, Evans D et al (2006) Structure and function of eukaryotic ribonuclease P RNA. Mol Cell 24:445–456CrossRefPubMedGoogle Scholar
  47. Mohanty BK, Kushner SR (2007) Ribonuclease P processes polycistronic tRNA transcripts in Escherichia coli independent of ribonuclease E. Nucleic Acids Res 35:7614–7625CrossRefPubMedGoogle Scholar
  48. Mohanty BK, Kushner SR (2008) Rho-independent transcription terminators inhibit RNase P processing of the secG leuU and metT tRNA polycistronic transcripts in Escherichia coli. Nucleic Acids Res 36:364–375CrossRefPubMedGoogle Scholar
  49. Pagano A, Castelnuovo M, Tortelli F et al (2007) New small nuclear RNA gene-like transcriptional units as sources of regulatory transcripts. PLoS Genet 3:e1CrossRefPubMedGoogle Scholar
  50. Prieto JL, McStay B (2008) Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116–2123CrossRefPubMedGoogle Scholar
  51. Randau L, Schröder I, Söll D (2008) Life without RNase P. Nature 453:120–123CrossRefPubMedGoogle Scholar
  52. Reiner R, Ben-Asouli Y, Krilovetzky I et al (2006) A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev 20:1621–1635CrossRefPubMedGoogle Scholar
  53. Reiner R, Krasnov-Yoeli N, Dehtiar Y et al (2008) Function and assembly of a chromatin-associated RNase P that is required for efficient transcription by RNA polymerase I. PLoS One 3:e4072CrossRefPubMedGoogle Scholar
  54. Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J Biol Chem 247:5243–5251PubMedGoogle Scholar
  55. Rosenblad MA, López MD, Piccinelli P et al (2006) Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 34:5145–5156CrossRefPubMedGoogle Scholar
  56. Salavati R, Panigrahi AK, Stuart KD (2001) Mitochondrial ribonuclease P activity of Trypanosoma brucei. Mol Biochem Parasitol 115:109–117CrossRefPubMedGoogle Scholar
  57. Samanta MP, Tongprasit W, Sethi H, Chin CS, Stolc V (2006) Global identification of noncoding RNAs in Saccharomyces serevisiae by modulating an essential RNA processing pathway. Proc Natl Acad Sci USA 103:4192–4197Google Scholar
  58. Smith CL, Peterson CL (2005) ATP-dependent chromatin remodeling. Curr Top Dev Biol 65:115–148Google Scholar
  59. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN ε/β nuclear retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359CrossRefPubMedGoogle Scholar
  60. Terada A, Honda T, Fukuhara H et al (2006) Characterization of the archaeal ribonuclease P proteins from Pyrococcus horikoshii OT3. J Biochem 140:293–298CrossRefPubMedGoogle Scholar
  61. Tsai HY, Pulukkunat DK, Woznick WK et al (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci USA 103:16147–16152CrossRefPubMedGoogle Scholar
  62. van Eenennaam H, Pruijn GJ, van Venrooij WJ (1999) hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes. Nucleic Acids Res 27:2465–2472CrossRefPubMedGoogle Scholar
  63. van Eenennaam H, Lugtenberg D, Vogelzangs JH et al (2001a) hPop5, a protein subunit of the human RNase MRP and RNase P endoribonucleases. J Biol Chem 276:31635–31641CrossRefPubMedGoogle Scholar
  64. van Eenennaam H, van der Heijden A, Janssen RJ et al (2001b) Basic domains target protein subunits of the RNase MRP complex to the nucleolus independently of complex association. Mol Biol Cell 12:3680–3689PubMedGoogle Scholar
  65. Welting TJ, Kikkert BJ, van Venrooij WJ et al (2006) Differential association of protein subunits with the human RNase MRP and RNase P complexes. RNA 12:1373–1382CrossRefPubMedGoogle Scholar
  66. Wilusz JE, Freier SM, Spector DL (2008) 3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA. Cell 135:919–932CrossRefPubMedGoogle Scholar
  67. Yang L, Altman S (2007). A noncoding RNA in Saccharomyces cerevisiae is an RNase P substrate. RNA 13:682–690Google Scholar
  68. Zhang H, Altman S (2004) Inhibition of the expression of the human RNase P protein subunits Rpp 21, Rpp25, Rpp29 by external guide sequences (EGSs) and siRNA. J Mol Biol 342:1077–1083CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Molecular BiologyThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations