Manganese Metalloproteins

  • Sarah J. Smith
  • Kieran S. Hadler
  • Gerhard Schenk
  • Graeme R. Hanson
  • Nataša Mitić
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)


While manganese has been successfully exploited as a spectroscopic probe of EPR silent centers (Zn, Ca, Mg) in metalloenzymes, it was only during the last decade that manganese-containing metalloenzymes were investigated in great detail. Indeed, in some biological systems it remains unclear whether iron and/or manganese is required for catalytic competency. Binuclear manganese enzymes are a small group of enzymes that catalyze a variety of chemical reactions and are involved in numerous metabolic functions. In this review the structural and biochemical properties of these enzymes are described. The contributions of electron paramagnetic resonance-related techniques to our understanding of the structure and reactivity of binuclear manganese enzymes are discussed and, where appropriate, supported by data obtained from complementary spectroscopic methods. This article is intended as a guide to illustrate the usefulness of electron paramagnetic resonancerelated techniques in the study of these enzymes.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Signal Ribonucleotide Reductase Hyperfine Coupling Electron Spin Echo Envelope Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitić N, Hanson GR, Schenk G. 2009. Multinuclear non-heme iron enzymes. In Biological magnetic resonance, Vol. 28: High resolution EPR: applications to metalloenzymes and metals in medicine, pp. 269–395. Ed GR Hanson, LJ Beliner. New York: Springer.Google Scholar
  2. 2.
    Jiang W, Bollinger JM, Krebs C. 2007. The active form of Chlamydia trachomatis ribonucleotide reductase R2 protein contains a heterodinuclear Mn(IV)/Fe(III) cluster with S = 1 ground state. J Am Chem Soc 129:7504–7505.PubMedGoogle Scholar
  3. 3.
    Stemmler TL, Sossong TM Jr, Goldstein JI, Ash DE, Elgren TE, Kurtz DM, Penner-Hahn JE. 1997. EXAFS comparison of the dimanganese core structures of manganese catalase, arginase, and manganese-substituted ribonucleotide reductase and hemerythrin. Biochemistry 36:9847–9858.PubMedGoogle Scholar
  4. 4.
    Schenk G, Boutchard CL, Carrington LE, Noble CJ, Moubaraki B, Murray KS, de Jersey J, Hanson GR, Hamilton S. 2001. A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe–Mn center. J Biol Chem 276:19084–19088.PubMedGoogle Scholar
  5. 5.
    Ash DE, Cox JD, Christianson DW. 1999. Arginase: a binuclear manganese metalloenzyme. In Metal ions in biological systems, pp. 407–428. Ed A Sigel, H Sigel. New York: Marcel Dekker.Google Scholar
  6. 6.
    Yoder DW, Hwang J, Penner-Hahn JE. 2000. Manganese catalases. In Manganese and its role in biological processes, pp. 527–557. Ed A Sigel, H Sigel, New York: Marcel Dekker.Google Scholar
  7. 7.
    Kono Y, Fridovich I. 1983. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. J Biol Chem 258:6015–6019.PubMedGoogle Scholar
  8. 8.
    Barynin VV, Vagin AA, Melik-Adamyan WR, Grebenko AI, Khangulov SV, Popov AN, Andrianova ME, Vainshtein BK 1986. Three-dimensional structure of the T-catalase with a 3-Å resolution. Dokl Akad Nauk SSSR 288:877–880.Google Scholar
  9. 9.
    Robbe-Saule V, Coynault C, Ibanez-Ruiz M, Hermant D, Norel F 2001. Identification of a non-haem catalase in Salmonella and its regulation by RpoS (σS). Mol Microbiol 39:1533–1545.PubMedGoogle Scholar
  10. 10.
    Kagawa M, Murakoshi N, Nishikawa Y, Matsumoto G, Kurata Y, Mizobata T, Kawata Y, Nagai J 1999. Purification and cloning of a thermostable manganese catalase from a thermophilic bacterium. Arch Biochem Biophys 362:346–355.PubMedGoogle Scholar
  11. 11.
    Allgood GS, Perry JJ. 1986. Characterization of a manganese-containing catalase from the obligate thermophile Thermleophilum album. J Bacteriol 168:563–567.PubMedGoogle Scholar
  12. 12.
    Amo T, Atomi H, Imanaka T. 2002. Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J Bacteriol 184:3305–3312.PubMedGoogle Scholar
  13. 13.
    Dismukes GC. 1996. Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926.PubMedGoogle Scholar
  14. 14.
    Antonyuk SV, Melik-Adamyan WR, Popov AN, Lamzin VS, Hempstead PD, Harrison PM, Artymyuk PJ, Barynin VV. 2000. Three-dimensional structure of the enzyme dimanganese catalase from Thermus thermophilus at 1 Å resolution. Crystallogr Rep 45:105–116.Google Scholar
  15. 15.
    Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW. 2001. Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 9:725–738.PubMedGoogle Scholar
  16. 16.
    Whittaker MM, Barynin VV, Igarashi T, Whittaker JW. 2003. Outer sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster core: mechanistic implications. Eur J Biochem 270:1102–1116.PubMedGoogle Scholar
  17. 17.
    Barynin VV, Hempstead PD, Vagin AA, Antonyuk SV, Melik-Adamyan WR, Lamzin VS, Harrison PM, Artymiuk PJ. 1997. The three-dimensional structure of the di-Mn catalase, and the environment of the di-Mn sites in different redox states. J Inorg Biochem 67:196.Google Scholar
  18. 18.
    Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW. 1999. The oxidized (3,3) state of manganese catalase. Comparison of enzymes from Thermus thermophilus and Lactobacillus plantarum. Biochemistry 38:9126–9136.PubMedGoogle Scholar
  19. 19.
    Khangulov SV, Goldfeld MG, Gerasimenko VV, Andreeva NE, Barynin VV, Grebenko AI 1990. Effect of anions and redox state on the activity of manganese containing catalase from Thermus thermophilus. J Inorg Biochem 40:279–292.Google Scholar
  20. 20.
    Waldo GS, Penner-Hahn JE. 1995. Mechanism of manganese catalase peroxide disproportionation: determination of manganese oxidation states during turnover. Biochemistry 34:1507–1512.PubMedGoogle Scholar
  21. 21.
    Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH. 2004. Manganese clusters with relevance to photosystem II. Chem Rev 104:3981–4026.PubMedGoogle Scholar
  22. 22.
    Wu AJ, Penner-Hahn JE, Pecoraro VL. 2004. Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev 104:903–938.PubMedGoogle Scholar
  23. 23.
    Khangulov S, Barynin VV, Voevodskaya NV, Grebenko AI. 1990. ESR spectroscopy of the binuclear cluster of manganese ions in the active center of Mn-catalase from Thermus thermophilus. Biochim Biophys Acta 1020:305–310.Google Scholar
  24. 24.
    Meier AE, Whittaker MM, Whittaker JW. 1996. EPR polarization studies on Mn catalase from Lactobacillus plantarum. Biochemistry 35:348–360.PubMedGoogle Scholar
  25. 25.
    Khangulov S, Pessiki PJ, Barynin VV, Ash DE, Dismukes GC. 1995. Determination of the metal ion separation and energies of the three lowest electronic states of dimanganese(II,II) complexes and enzymes: catalase and liver arginase. Biochemistry 34:2015–2025.PubMedGoogle Scholar
  26. 26.
    Golombek AP, Hendrich MP. 2003. Quantitative analysis of dinuclear manganese(II) EPR spectra. J Magn Reson 165:33–48.PubMedGoogle Scholar
  27. 27.
    Jacquamet L, Michaud-Soret I, Debaecker-Petit N, Barynin VV, Zimmermann J-L, . 1997. Magnetization studies of the reduced active form of the catalasus thermophilus. Angew Chem, Int Ed 36:1626–1629.Google Scholar
  28. 28.
    Le Pape L, Perret E, Michaud-Soret I, Latour J-M. 2002. Magnetization studies of the active and fluoride-inhibited derivatives of the reduced catalase of Lactobacillus plantarum: toward a general picture of the anion-inhibited and active forms of the reduced dimanganese catalases. J Biol Inorg Chem 7:445–450.PubMedGoogle Scholar
  29. 29.
    Michaud-Soret I, Jacquamet L, Debaecker-Petit N, Le Pape L, Barynin VV, Latour J- M. 1998. The existence of two oxidised Mn(III)Mn(III) forms of Thermus thermophilus manganese catalase. Inorg Chem 37:3874–3876.PubMedGoogle Scholar
  30. 30.
    Sarrou J, Ioannidis N, Deligiannakis Y, Petrouleas V. 1998. A Mn(II)–Mn(III) EPR signal arises from the interaction of NO with the S1 state of the water oxidising complex of photosystem II. Biochemistry 37:3581–3587.PubMedGoogle Scholar
  31. 31.
    Teutloff C, Schäfer K-O, Sinnecker S, Barynin V, Bittl R, Wieghardt K, Lendzian F, Lubitz W. 2005. High-field EPR investigations of MnIIIMnIV and MnIIMnIII states of dimanganese catalase and related model systems. Magn Reson Chem 43:S51–64.PubMedGoogle Scholar
  32. 32.
    Zheng M, Khangulov SV, Dismukes GC, Barynin VV. 1994. Electronic structure of dimanganese(II,III) and dimanganese(III,IV) complexes and dimanganese catalase enzyme: a general EPR spectral simulation approach. Inorg Chem 33:382–387.Google Scholar
  33. 33.
    Fronko RM, Penner-Hahn JE, Bender CJ. 1988. EPR spectral evidence for a dinuclear active site in the Lactobacillus plantarum manganese catalase. J Am Chem Soc 110:7554–7555.Google Scholar
  34. 34.
    Haddy A, Waldo GS, Sands RH, Penner-Hahn JE. 1994. Simulation of multifrequency EPR spectra from Mn(III)/Mn(IV) catalase of Lactobacillus plantarum using a new approach based on perturbation theory. Inorg Chem 33:2677–2682.Google Scholar
  35. 35.
    Ivancich A, Barynin VV, Zimmermann J-L. 1995. Pulsed EPR studies of the binuclear Mn(III)Mn(IV) center in catalase from Thermus thermophilus. Biochemistry 34:6628–6639.PubMedGoogle Scholar
  36. 36.
    Khangulov S, Sivaraja M, Barynin VV, Dismukes GC. 1993. The dimanganese(III,IV) oxidation state of catalase from Thermus thermophilus: electron nuclear double resonance analysis of water and protein ligands in the active site. Biochemistry 32:4912–4924.PubMedGoogle Scholar
  37. 37.
    Schäfer K-O, Bittl R, Lendzian F, Barynin V, Weyhermueller T, Wieghardt K, Lubitz W. 2003. Multifrequency EPR investigation of dimanganese catalase and related Mn(III)Mn(IV) complexes. J Phys Chem B 107:1242–1250.Google Scholar
  38. 38.
    Sinnecker S, Neese F, Noodleman L, Lubitz W. 2004. Calculating the electron paramagnetic resonance paramaters of exchange coupled transition metal complexes using broken symmetry density functional theory: application to a MnIIIMnIV model compound. J Am Chem Soc 126:2613–2622.PubMedGoogle Scholar
  39. 39.
    Stemmler TL, Sturgeon BE, Randall DW, Britt RD, Penner-Hahn JE. 1997. Spectroscopic characterization of inhibitor interactions with the Mn(III)/Mn(IV) core in Lactobacillus plantarum manganese catalase. J Am Chem Soc 119:9215–9225.Google Scholar
  40. 40.
    Schäfer K-O, Bittl R, Zweygart W, Lendzian F, Haselhorst G, Weyhermueller T, Weighardt K, Lubitz W. 1998. Electronic structure of antiferromagnetically coupled dinuclear manganese (MnIIIMnIV) complexes studied by magnetic resonance techniques. J Am Chem Soc 120:13104–13120.Google Scholar
  41. 41.
    Waldo GS, Yu S, Penner-Hahn JE. 1992. Structural characterization of the binuclear Mn site in Lactobacillus plantarum manganese catalase. J Am Chem Soc 114:5869–5870.Google Scholar
  42. 42.
    Gamelin DR, Kirk ML, Stemmler TL, Pal A, Armstrong WH, Penner-Hahn JE, Solomon EI. 1994. Electronic structure and spectroscopy of manganese catalase and di-µ-oxo [MnIIIMnIV] model complexes. J Am Chem Soc 116:2392–2399.Google Scholar
  43. 43.
    Boelrijk AEM, Dismukes GC. 2000. Mechanism of hydrogen peroxide dismutation by a dimanganese catalase mimic: dominant role of an intramolecular base on substrate binding affinity and rate acceleration. Inorg Chem 39:3020–3028.PubMedGoogle Scholar
  44. 44.
    Nordlund P, Reichard P. 2006. Ribonucleotide reductases. Annu Rev Biochem 75:681–706.PubMedGoogle Scholar
  45. 45.
    Stubbe J. 2003. Di-iron-tyrosyl radical ribonucleotide reductases. Curr Opin Chem Biol 7:183–188.PubMedGoogle Scholar
  46. 46.
    Stubbe J, Nocera DG, Yee CS, Chang MCY. 2003. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103:2167–2202.PubMedGoogle Scholar
  47. 47.
    Jordan A, Reichard P. 1998. Ribonucleotide reductases. Annu Rev Biochem 67:71–98.PubMedGoogle Scholar
  48. 48.
    Högbom M, Stenmark P, Voevodskaya N, McClarty G, Gräslund A, Nordlund P. 2004. The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. Science 305:245–248.PubMedGoogle Scholar
  49. 49.
    Jordan A, Gilbert I, Barbé J. 1994. Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol 176:3420–3427.PubMedGoogle Scholar
  50. 50.
    Jordan A, Pontis E, Åslund F, Hellman U, Gilbert I, Reichard P. 1996. The ribonucleotide reductase system of Lactococcus lactis. J Biol Chem 271:8779–8785.PubMedGoogle Scholar
  51. 51.
    Jordan A, Pontis E, Atta M, Krook M, Gilbert I, Barbé J, Reichard P. 1994. A second class I ribonucleotide reductase in Enterobacteriaceae: characterization of the Salmonella typhimurium enzyme. Proc Natl Acad Sci USA 91:12892–12896.PubMedGoogle Scholar
  52. 52.
    Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, Lippert B, Jarvi E, Resvick R. 1991. 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–1884.PubMedGoogle Scholar
  53. 53.
    Mayhew CN, Phillips JD, Greenberg RN, Birch NJ, Elford HL, Gallicchio VS. 1999. In vivo and in vitro comparison of the short-term hematopoietic toxicity between hydroxyurea and Trimidox or Didox, novel ribonucleotide reductase inhibitors with potential anti-HIV-1 activity. Stem Cells 17:345–356.PubMedGoogle Scholar
  54. 54.
    Lori F, Malykh A, Cara A, Sun D, Weinstein JN, Lisziewicz J, Gallo RC. 1994. Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science 266:801–805.PubMedGoogle Scholar
  55. 55.
    Van der Donk WA, Yu G, Pérez L, Sanchez RJ, Stubbe J, Samano V, Robins MJ. 1998. Detection of a new substrate-derived radical during inactivation of ribonucleotide reductase from Escherichia coli by gemcitabine 5-diphosphate. Biochemistry 37:6419–6426.PubMedGoogle Scholar
  56. 56.
    Roshick C, Iliffe-Lee ER, McClarty G. 2000. Cloning and characterization of ribonucleotide reductase from Chlamydia trachomatis. J Biol Chem 275:38111–38119.PubMedGoogle Scholar
  57. 57.
    Voevodskaya N, Lendzian F, Gräslund A. 2005. A stable FeIII–FeIV replacement of tyrosyl radical in a class I ribonucleotide reductase. Biochem Biophys Res Commun 330:1213–1216.PubMedGoogle Scholar
  58. 58.
    Voevodskaya N, Narvaez A-J, Domkin V, Torrents E, Thelander L, Graeslund A. 2006. Chlamydial ribonucleotide reductase: tyrosyl radical function in catalysis replaced by the FeIII–FeIV cluster. Proc Natl Acad Sci USA 103:9850–9854.PubMedGoogle Scholar
  59. 59.
    Jiang W, Yun D, Saleh L, Barr EW, Xing G, Hoffart LM, Maslak M-A, Krebs C, Bollinger JM. 2007. A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316:1188–1191.PubMedGoogle Scholar
  60. 60.
    Voevodskaya N, Lendzian F, Ehrenberg A, Graeslund A. 2007. High catalytic activity achieved with a mixed manganese–iron site in protein R2 of Chlamydia ribonucleotide reductase. FEBS Lett 581:3351–3355.PubMedGoogle Scholar
  61. 61.
    Fritscher J, Artin E, Wnuk S, Bar G, Robblee JH, Kacprzak S, Kaupp M, Griffin RG, Bennati M, Stubbe J. 2005. Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′- diphosphatase: trapping of the 3′-ketonucleotide. J Am Chem Soc 127:7729–7738.PubMedGoogle Scholar
  62. 62.
    Stubbe J, van der Donk WA. 1998. Protein radicals in enzyme catalysis. Chem Rev 98:705–762.PubMedGoogle Scholar
  63. 63.
    Eliasson R, Pontis E, Eckstein F, Reichard P 1994. Interactions of 2′-modified azido- and haloanalogs of deoxycytidine 5′-triphosphate with the anaerobic ribonucleotide reductase of Escherichia coli. J Biol Chem 269:26116–26120.PubMedGoogle Scholar
  64. 64.
    Jiang W, Hoffart LM, Krebs C, Bollinger JM. 2007. A manganese(IV)/iron(IV) intermediate in assembly of the manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase. Biochemistry 46:8709–8716.PubMedGoogle Scholar
  65. 65.
    Sinnecker S, Neese F, Lubitz W. 2005. Dimanganese catalase-spectroscopic parameters from broken-symmetry density functional theory of the superoxidized MnIII/MnIV state. J Biol Inorg Chem 10:231–238.PubMedGoogle Scholar
  66. 66.
    Lee SK, Fox BG, Froland WA, Lipscomb JD, Munck E. 1993. A transient intermediate of the methane monooxygenase catalytic cycle containing an FeIVFeIV cluster. J Am Chem Soc 115:6450–6451.Google Scholar
  67. 67.
    Liu KE, Wang D, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ. 1994. Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase/hydroxlase from Methylococcus capsulatus (Bath). J Am Chem Soc 116:7465–7466.Google Scholar
  68. 68.
    Jiang W, Xie J, Nørgaard H, Bollinger JM, Krebs C. 2008. Rapid and quantitative activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide. Biochemistry 47:4477–4483.PubMedGoogle Scholar
  69. 69.
    Jiang W, Saleh L, Barr EW, Xie J, Gardner MM, Krebs C, Bollinger JM. 2008. Branched activation- and catalysis-specific pathways for electron relay to the manganese/iron cofactor in ribonucleotide reductase from Chlamydia trachomatis. Biochemistry 47:8477–8484.PubMedGoogle Scholar
  70. 70.
    Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L. 1997. An Fe2 IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275:515–518.PubMedGoogle Scholar
  71. 71.
    Jordan A, Aragall E, Gibert I, Barbé J. 1996. Promoter identification and expression analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one to two class I ribonucleotide reductases present in both bacteria. Mol Microbiol 19:777–790.PubMedGoogle Scholar
  72. 72.
    Jordan A, Åslund F, Pontis E, Reichard P, Holmgren A. 1997. Characterization of Escherichia coli NrdH: a glytaredoxin-like protein with a thioredoxin-like activity profile. J Biol Chem 272:18044–18050.PubMedGoogle Scholar
  73. 73.
    Jordan A, Gibert I, Barbé J. 1995. Two different operons for the same function: comparison of the Salmonella typhimurium nrd AB and nrdEF genes. Gene 167:75–79.PubMedGoogle Scholar
  74. 74.
    Himmelreich R, Plagens H, Hilbert H, Reiner B, Herrmann R. 1997. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res 25:701–712.PubMedGoogle Scholar
  75. 75.
    Scotti C, Valbuzzi A, Perego M, Galizzi A, Albertini AM. 1996. The Bacillus subtilis genes for ribonucleotide reductase are similar to the genes for the second class I NrdE/NrdF enzymes of Enterobacteriaceae. Microbiology 142:2995–3004.PubMedGoogle Scholar
  76. 76.
    Yang F, Rubin H. 1994. Isolation of ribonucleotide reductase from Mycobacterium tuberculosis and cloning, expression, and purification of the large subunit. J Bacteriol 176:6738–6743.PubMedGoogle Scholar
  77. 77.
    Nordlund P, Eklund H. 1995. Di-iron-carboxylate proteins. Curr Opin Struct Biol 5:758–766.PubMedGoogle Scholar
  78. 78.
    Eriksson M, Jordan A, Eklund H. 1998. Structure of Salmonella typhimurium nrdF ribonucleotide reductase in its oxidized and reduced forms. Biochemistry 37:13359– 13369.PubMedGoogle Scholar
  79. 79.
    Uppsten M, Färnegårdh M, Domkin V, Uhlin U 2006. The first holocomplex structure of ribonucleotide reductase gives new insight into its mechanism of action. J Mol Biol 359:365–377.PubMedGoogle Scholar
  80. 80.
    Högbom M, Huque Y, Sjöberg B-M, Nordlund P. 2002. Crystal structure of the diiron/radical protein of ribonucleotide reductase from Corynebacterium ammoniagenes. Biochemistry 41:1381–1389.Google Scholar
  81. 81.
    Schimpff-Weiland G, Follmann H. 1981. A new manganese-activated ribonucleotide reductase found in gram-positive bacteria. Biochem Biophys Res Commun 102:1276– 1282.PubMedGoogle Scholar
  82. 82.
    Willing A, Follmann H, Auling G. 1988. Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. Eur J Biochem 170:603–611.PubMedGoogle Scholar
  83. 83.
    Auling G, Thaler M, Diekmann H. 1997. Parameters of unbalanced growth and reversible inhibition of deoxyribonucleic acid synthesis in Brevibacterium ammoniagenes ATCC 6872 induced by depletion of Mn2+: inhibitor studies on the reversibility of deoxyribonucleic acid synthesis. Arch Microbiol 127:105–114.Google Scholar
  84. 84.
    Huque Y, Fieschi F, Torrents E, Gibert I, Eliasson R, Reichard P, Sahlin M, Sjöberg B-M. 2000. The active form of the R2F protein of class Ib ribonucleotide reductase from Corynebacterium ammoniagenes is a diferric protein. J Biol Chem 275:25365– 25371.PubMedGoogle Scholar
  85. 85.
    Griepenburg U, Blasczyk K, Kappl R, Hüttermann J, Auling G. 1998. A divalent metal site in the small subunit of the manganese-dependent ribonucleotide reductase of Corynebacterium ammoniagenes. Biochemistry 37:7992–7996.Google Scholar
  86. 86.
    Antanaitis BC, Brown RD, Chasteen ND, Freedman JH, Koenig SH, Lilienthal HR, Peisach J, Brewer CF. 1987. Electron paramagnetic resonance and magnetic susceptibility studies of dimanganese concanavalin A: evidence for antiferromagnetic exchange coupling. Biochemistry 26:7932–7937.PubMedGoogle Scholar
  87. 87.
    Dismukes GC, Siderer Y. 1982. Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci USA 78:274–278.Google Scholar
  88. 88.
    Fieschi F, Torrents E, Toulokhonova L, Jordan A, Hellman E, Barbe J, Gibert I, Karlsson M, Sjöberg B-M. 1998. The manganese-containing ribonucleotide reductase of Corynebacterium ammoniagenes is a class Ib enzyme. J Biol Chem 273:4329–4337.PubMedGoogle Scholar
  89. 89.
    Kanyo ZF, Scolnick LR, Ash DE, Christianson DW. 1996. Strucutre of a unique binuclear manganese cluster in arginase. Nature 383:554–557.PubMedGoogle Scholar
  90. 90.
    Allard P, Barra AL, Andersson KK, Schmidt PP, Atta M, Gräslund A. 1996. Characterization of a new tyrosyl free radical in Salmonella typhimurium ribonucleotide reductase with EPR at 9.45 and 245 GHz. J Am Chem Soc 118:895–896.Google Scholar
  91. 91.
    Graslund A, Sahlin M. 1996. Electron paramagnetic resonance and nuclear magnetic resonance studies of class I ribonucleotide reductase. Annu Rev Biophys Biomol Struct 25:259–286.PubMedGoogle Scholar
  92. 92.
    Sahlin M, Petersson L, Graeslund A, Ehrenberg A, Sjoeberg B-M, Thelander L. 1987. Magnetic interaction between the tyrosyl free radical and the antiferromagnetically coupled iron center in ribonucleotide reductase. Biochemistry 26:5541–5548.PubMedGoogle Scholar
  93. 93.
    Galander M, Uppsten M, Uhlin U, Lendzian F. 2006. Orientation of the tyrosyl radical in Salmonella typhimurium class Ib ribonucleotide reductase determined by high field EPR of R2F single crystals. J Biol Chem 281:31743–31752.PubMedGoogle Scholar
  94. 94.
    Simurdiak M, Lee J, Zhao H. 2006. A new class of arylamine oxygenases: evidence that p-aminobenzoate N-oxygenase (AurF) is a di-iron enzyme and further mechanistic studies. ChemBioChem 7:1169–1172.PubMedGoogle Scholar
  95. 95.
    Schwartz JL, Tishler M, Arison BH, Shafer HM, Omura S. 1976. Identification of mycolutein and pulvomycin as eureothin and labilomycin respectively. J Antibiot 29:236–241.PubMedGoogle Scholar
  96. 96.
    Ziehl M, He J, Dahse H-M, Hertweck C. 2005. Mutasynthesis of aureonitrile: an eureothin derivative with significantly improved cytostatic effect. Angew Chem, Int Ed Engl 44:1202–1205.Google Scholar
  97. 97.
    Winkler R, Richter MEA, Knüpfer U, Merten D, Hertweck C. 2006. Regio- and chemoselective enzymatic N-oxygenation in vivo, in vitro and in flow. Angew Chem, Int Ed Engl 45:8016–8018.Google Scholar
  98. 98.
    Fox BG, Shanklin J, Ai J, Loehr TM, Sanders-Leohr J. 1994. Resonance raman evidence for an Fe–O–Fe center in stearoyl-ACP desaturase: primary sequence identity with other diiron-oxo proteins. Biochemistry 33:12776–12786.PubMedGoogle Scholar
  99. 99.
    Andersson KK, Froland WA, Lee SK, Lipscomb JD. 1991. Dioxygen independent oxygenation of hydrocarbons by methane monooxygenase hydroxylase component. New J Chem 15:411–415.Google Scholar
  100. 100.
    Winkler R, Hertweck C. 2005. Sequential enzymatic oxidation of aminoarenes to nitroarenes via hydroxylamines. Angew Chem, Int Ed Engl 44:4083–4087.Google Scholar
  101. 101.
    Zocher G, Winkler R, Hertweck C, Schulz GE. 2007. Structure and action of the N-oxygenase AurF from Streptomyces thioleteus. J Mol Biol 373:65–74.PubMedGoogle Scholar
  102. 102.
    Nordlund P, Eklund H. 1993. Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol 232:123–164.PubMedGoogle Scholar
  103. 103.
    Winkler R, Zocher G, Richter I, Friedrich T, Schulz GE, Hertweck C. 2007. A binuclear manganese cluster that catalyzes radical-mediated N-oxygenation. Angew Chem, Int Ed Engl 46:8605–8608.Google Scholar
  104. 104.
    Mukherjee S, Weyhermüller T, Bothe E, Weighardt K, Chaudhuri P. 2004. Dinuclear and mononuclear manganese(IV)-radical complexes and their catalytic catecholase activity. Dalton Trans 22:3842–3853.PubMedGoogle Scholar
  105. 105.
    Pierce BS, Elgren TE, Hendrich MP. 2003. Mechanistic implications for the formation of the diiron cluster in ribonucleotide reductase provided by quantitative EPR spectroscopy. J Am Chem Soc 125:8748–8759.PubMedGoogle Scholar
  106. 106.
    Krebs C, Matthews ML, Jiang W, Bollinger JM. 2007. AurF from Streptomyces thioluteus and a possible new family of manganese/iron oxygenases. Biochemistry 46:10413–10418.PubMedGoogle Scholar
  107. 107.
    Wallar BJ, Lipscomb JD. 1996. Dioxygen activation by enzyme containing binuclear non-heme iron clusters. Chem Rev 96:2625–2658.PubMedGoogle Scholar
  108. 108.
    Friedrich C, Rother D, Bardischewsky F, Quentmeier A, Fischer J. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882.PubMedGoogle Scholar
  109. 109.
    Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG. 2003. Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Commun 312:1011–1018.PubMedGoogle Scholar
  110. 110.
    Epel B, Schaefer KO, Quentmeier A, Friedrich C, Lubitz W. 2005. Multifrequency EPR analysis of the dimanganese cluster of the putative sulfate thiohydrolase SoxB of Paracoccus pantotrophus. J Biol Inorg Chem 10:636–642.Google Scholar
  111. 111.
    Friedrich C, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H. 2000. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus BG17. J Bacteriol 182:4677–4687.PubMedGoogle Scholar
  112. 112.
    Bagchi A, Ghosh TC. 2005. A structural study towards the understanding of interactions of SoxY, SoxZ and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidising (sox) operon. Biochem Biophys Res Commun 335:609–615.PubMedGoogle Scholar
  113. 113.
    Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G. 2006. The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363.PubMedGoogle Scholar
  114. 114.
    Cammack R, Chapman A, Lu W-P, Karagouni A, Kelly DP. 1989. Evidence that protein B of the thiosulfate-oxidizing system of Thiobacillus versutus contains a binuclear manganese cluster. FEBS Lett 253:239–243.Google Scholar
  115. 115.
    Schäfer K-O. 2002. Exchange coupled manganese complexes: model systems for the active centres of redox proteins investigated with EPR techniques. PhD thesis. Max- Volmer-Laboratory, Institute for Chemistry, Technical University Berlin.Google Scholar
  116. 116.
    Lohse DL, Denu JM, Dixon JE 1995. Insights derived from the structures of the Ser/Thr phosphatases calcineurin and protein phosphatase 1. Structure 3:987–990.PubMedGoogle Scholar
  117. 117.
    Mertz P, Yu L, Sikkink R, Rusnak F. 1997. Kinetic and spectroscopic analyses of mutants of a conserved histidine in the metallophosphatases calcineurin and λ protein phosphatase. J Biol Chem 272:21296–21302.PubMedGoogle Scholar
  118. 118.
    Zhuo S, Clemens JC, Hakes DJ, Barford D, Dixon JE. 1993. Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. J Biol Chem 268:17754–17761.PubMedGoogle Scholar
  119. 119.
    Hoff RH, Mertz P, Rusnak F, Hengge AC. 1999. The transition state of the phosphoryl-transfer reaction catalysed by the lambda Ser/Thr protein phosphatase. J Am Chem Soc 121:6382–6390.Google Scholar
  120. 120.
    Reiter TA, Reiter NJ, Rusnak F. 2002. Mn2+ is a native metal ion activator for bacteriophage lambda protein phosphatase. Biochemistry 41:15404–15409.PubMedGoogle Scholar
  121. 121.
    Reiter NJ, White DJ, Rusnak F. 2002. Inhibition of bacteriophage lambda protein phosphatase by organic and oxoanion inhibitors. Biochemistry 41:1051–1059.PubMedGoogle Scholar
  122. 122.
    Voegtli WC, White DJ, Reiter NJ, Rusnak F, Rosenzweig AC. 2000. Structure of the bacteriophage lambda ser/thr protein phosphatase with sulfate ion bound in two coordination modes. Biochemistry 39:15365–15374.PubMedGoogle Scholar
  123. 123.
    Rusnak F, Yu L, Todorovic S, Mertz P. 1999. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster. Biochemistry 38:6943–6952.PubMedGoogle Scholar
  124. 124.
    White DJ, Reiter NJ, Sikkink RA, Yu L, Rusnak F. 2001. Identification of the high affinity Mn2+ binding site of bacteriophage lambda phosphoprotein phosphatase: effects of metal ligand mutations on electron paramagnetic resonance spectra and phosphatase activities. Biochemistry 40:8918–8929.PubMedGoogle Scholar
  125. 125.
    Reiter T, Rusnak F. 2004. Electrochemical studies of the mono-Fe, Fe–Zn and Fe–Fe metalloisoforms of bacteriophage lambda protein phosphatase. Biochemistry 43:782–790.PubMedGoogle Scholar
  126. 126. Park AY, Mitic N, Jessop LL, Urathamaku T, Carr PD, Ollis DL, Beck JL, Hanson GR, Schenk G, Dixon NE. 2009. Assembly of the binuclear metallocenter in the proof-reading (ε) subunit of Escherichia coli DNA polymerase III. Unpublished results.Google Scholar
  127. 127.
    Swingle MR, Honkanen RE, Ciszak EM. 2004. Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. J Biol Chem 279:33992–33999.PubMedGoogle Scholar
  128. 128.
    Kuhn NJ, Ward S, Piponski M, Young TW. 1995. Purification of human hepatic arginase and its manganese(II)-dependent and pH-dependent interconversion between active and inactive forms: a possible pH-sensing function of the enzyme on the ornithine cycle. Arch Biochem Biophys 320:24–34.PubMedGoogle Scholar
  129. 129.
    Schenk G, Elliott TW, Leung E, Carrington LE, Mitic N, Gahan LR, Guddat LW. 2008. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. BMC Struct Biol 8:6.PubMedGoogle Scholar
  130. 130.
    Leung EWW, Teixeira M, Guddat LW, Mitic N, Schenk G. 2007. Structure, function and diversity of plant purple acid phosphatases. Curr Top Plant Biol 8:21–31.Google Scholar
  131. 131.
    Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA. 2000. Structure, function and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584.PubMedGoogle Scholar
  132. 132.
    Räisänen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK. 2005. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120–126.PubMedGoogle Scholar
  133. 133.
    Nuttleman PR, Roberts RM. 1990. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J Biol Chem 265:12192–12199.PubMedGoogle Scholar
  134. 134.
    Bozzo GG, Raghothama KG, Plaxton WC. 2002. Purification and characterization of two secreted purple acid phosphatases izoymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem 269:6278–6286.PubMedGoogle Scholar
  135. 135.
    Bozzo GG, Singh VK, Plaxton WC. 2004. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate-starvation inducible tomato purple acid phosphatase isozymes. FEBS Lett 573:51–54.PubMedGoogle Scholar
  136. 136.
    Rao MA, Gianfreda L, Palmiero F, Violante A. 1996. Interactions of acid phosphatase with clays, organic molecules and organo-mineral complexes. Soil Sci 161:751–760.Google Scholar
  137. 137.
    Campbell HD, Dionysius DA, Keough DT, Wilson BE, de Jersey J, Zerner B. 1978. Iron-containing acid-phosphatases—comparison of enzymes from beef spleen and pig allantoic fluid. Biochem Biophys Res Commun 82:615–620.PubMedGoogle Scholar
  138. 138.
    Beck JL, McConachie LA, Summors AC, Arnold WN, de Jersey J, Zerner B. 1986. Properties of a purple acid phosphatase from red kidney bean: a zinc-iron metalloenzyme. Biochim Biophys Acta 869:61–68.Google Scholar
  139. 139.
    Durmus A, Eicken C, Sift BH, Kratel A, Kappl R, Huttermann J, Krebs B. 1999. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas): metal content and spectroscopic characterization. Eur J Biochem 260:709–716.PubMedGoogle Scholar
  140. 140.
    Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J. 1999. Binuclear metal centers in plant purple acid phosphatases: Fe–Mn in sweet potato and Fe–Zn in soybean. Arch Biochem Biophys 370:183–189.PubMedGoogle Scholar
  141. 141.
    Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL. 1999. Crystal structure of mammalian purple acid phosphatase. Structure 7:757–767.PubMedGoogle Scholar
  142. 142.
    Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B. 1996. Mechanism of Fe(III)–Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol 259:737–748.PubMedGoogle Scholar
  143. 143.
    Lindqvist Y, Johansson E, Kaija H, Vihko P, Schneider G. 1999. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 Å resolution with a µ-(hydr)oxo bridged di-iron center. J Mol Biol 291:135–147.PubMedGoogle Scholar
  144. 144.
    Schenk G, Gahan LR, Carrington LE, Mitic N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW. 2005. Phosphate forms an unusual tripodal complex with the Fe–Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci USA 102:273–278.PubMedGoogle Scholar
  145. 145.
    Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han RL, Averill BA, Freeman HC, Guss JM. 2005. Crystal structures of recombinant human purple acid phosphatase with and without an inhibitory conformation of the repression loop. J Mol Biol 351:233–246.PubMedGoogle Scholar
  146. 146.
    Sträter N, Klabunde P, Tucker P, Witzel H, Krebs B. 1995. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)–Zn(II) active site. Science 268:1489–1492.PubMedGoogle Scholar
  147. 147.
    Uppenberg J, Lindqvist F, Svensson C, Ek-Rylander B, Andersson G. 1999. Crystal structure of a mammalian purple acid phosphatase. J Mol Biol 290:201–211.PubMedGoogle Scholar
  148. 148. Mitic N, Noble CJ, Gahan LR, Hanson GR, Schenk G. 2009. Metal ion mutagenesis—conversion of a purple acid phosphatase from sweet potato to a neutral phosphatase with the formation of an unprecedented catalytically competent MnIIMnII active site. J Am Chem Soc. DOI:10.1021/ja900797u..Google Scholar
  149. 149.
    Howard T, Telser J, de Rose VJ. 2000. An electron paramagnetic resonance study of Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N′,N′-tetramethylethylenediamine): a model for dinuclear manganese enzyme active sites. Inorg Chem 39:3379–3385.PubMedGoogle Scholar
  150. 150.
    Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639.Google Scholar
  151. 151.
    Bencini A, Gateschi D. 1990. EPR of exchange coupled systems. Berlin: Springer-Verlag.Google Scholar
  152. 152.
    Hanson GR, Noble CJ, Benson S. 2009. Molecular Sophe: an integrated approach to the structural characterization of metalloproteins: the next generation of computer simulation software. In Biological magnetic resonance, Vol. 28: High resolution EPR: applications to metalloenzymes and metals in medicine, pp. 105–174. Ed GR Hanson, LJ Beliner. New York: Springer.Google Scholar
  153. 153. Octave is open source software and can be downloaded from
  154. 154.
    Donarski WJ, Dumas DP, Heitmeyer DP, Lewis VE, Raushel FM. 1989. Structure–activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry 28:4650–4655.Google Scholar
  155. 155.
    Ghanem E, Raushel FM. 2005. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmacol 207:S459–S470.Google Scholar
  156. 156.
    Holm L, Sander C. 1997. An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28:72–82.PubMedGoogle Scholar
  157. 157.
    Jackson CJ, Carr PD, Kim H-K, Liu J-W, Herrald P, Mitic N, Schenk G, Clyde A, Ollis DL. 2006. Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. Biochem J 397:501–508.PubMedGoogle Scholar
  158. 158.
    Raushel FM, Holden HM. 2000. Phosphotriesterase: an enzyme in search of its natural substrate. Adv Enzymol Relat Areas Mol Biol 74:51–93.PubMedGoogle Scholar
  159. 159.
    Raushel FM. 2002. Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5:288–295.PubMedGoogle Scholar
  160. 160.
    Chae MY, Omburo GA, Lindahl PA, Raushel FM. 1993. Antiferromagnetic coupling in the binuclear metal cluster of manganese-substituted phosphotriesterase. J Am Chem Soc 115:12173–12174.Google Scholar
  161. 161.
    Jackson C, Kim H-K, Carr PD, Liu J-W, Ollis DL. 2005. The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochim Biophys Acta 1752:56–64.PubMedGoogle Scholar
  162. 162.
    Jackson CJ, Foo J-L, Kim H-K, Carr PD, Liu J-W, Salem G, Ollis DL. 2008. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. J Mol Biol 375:1189–1196.PubMedGoogle Scholar
  163. 163.
    McLoughlin SY, Jackson C, Liu J-W, Ollis DL. 2004. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. Protein Expression Purif 41:433–440.Google Scholar
  164. 164.
    Dong Y-J, Bartlam M, Sun L, Zhou Y-F, Zhang Z-P, Zhang C-G, Rao Z, Zhang X-E. 2005. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663.PubMedGoogle Scholar
  165. 165.
    Wu X-P, Liu W-D, Cao H, Li S-P, Cui Z-L. 2005. Determination of the catalytic structures of methyl parathion hydrolase. Chin J Biotechnol 21:998–1002.Google Scholar
  166. 166.
    Benning MM, Kuo JM, Raushel FM, Holden HM 1994. Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry 33:15001–15007.PubMedGoogle Scholar
  167. 167.
    Omburo GA, Kuo JM, Mullins LS, Raushel FM. 1992. Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283.PubMedGoogle Scholar
  168. 168.
    Benning MM, Shim H, Raushel FM, Holden HM. 2001. High resolution X-ray structure of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochemistry 40:2712–2722.Google Scholar
  169. 169.
    Vanhooke JL, Benning MM, Raushel FM, Holden HM. 1996. Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry 35:6020–6025.PubMedGoogle Scholar
  170. 170.
    Krauss M, Olsen L, Antony J, Hemmingsen L. 2002. Coordination geometries of Zn(II) and Cd(II) in Phosphotriesterase: influence of water molecules in the active site. J Phys Chem B 106:9446–9453.Google Scholar
  171. 171.
    Chae MY, Omburo GA, Lindahl PA, Raushel FM. 1995. Utilization of copper as a paramagnetic probe for the binuclear metal center of phosphotriesterase. Arch Biochem Biophys 316:765–772.PubMedGoogle Scholar
  172. 172.
    Samples CR, Howard T, Raushel FM, DeRose VJ. 2005. Protonation of the binuclear metal center within the active site of phosphotriesterase. Biochemistry 44:11005–11013.PubMedGoogle Scholar
  173. 173.
    Samples CR, Raushel FM, DeRose VJ. 2007. Activation of the binuclear metal center through formation of phosphotriesterase–inhibitor complexes. Biochemistry 46:3435–3442.PubMedGoogle Scholar
  174. 174.
    Hadler KS, Tanifum EA, Yip SH-C, Mitic N, Guddat L, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G. 2008. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in glycerophosphodiesterase from Enterobacter aerogenes. J Am Chem Soc 130:14129–14138.Google Scholar
  175. 175.
    Aubert SD, Yingchun L, Raushel FM. 2004. Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochemistry 43:5707–5715.PubMedGoogle Scholar
  176. 176.
    Christianson DW. 2005. Arginase: structure, mechanism, and physiological role in male and female sexual arousal. Acc Chem Res 38:191–201.PubMedGoogle Scholar
  177. 177.
    Herzfeld A, Raper SM. 1976. The heterogeneity of arginases in rat tissues. Biochem J 153:469–478.PubMedGoogle Scholar
  178. 178.
    Crombez EA, Cederbaum SD. 2005. Hyperargininemia due to liver arginase deficiency. Mol Genet Metab 84:243–251.PubMedGoogle Scholar
  179. 179.
    Brusilow SW, Horwich AL. 2001. Urea cycle enzymes. In The metabolic and molecular basis of inherited disease, pp. 1909–1970. Ed CR Scriver, AL Beaudet, WS Sly, D Valle. New York: McGraw-HillGoogle Scholar
  180. 180.
    Ash DE, Scolnick LR, Kanyo ZF, Vockley JG, Cederbaum SD, Christianson DW. 1998. Molecular basis of hyperargininemia: structure–function consequences of mutations in human liver arginase. Mol Genet Metab 64:243–249.PubMedGoogle Scholar
  181. 181.
    Morris SM Jr, Bhamidipati D, D Kepka-Lenhart, 1997. Human type II arginase: sequence analysis and tissue-specific expression. Gene 193:157–161.PubMedGoogle Scholar
  182. 182. Ash DE. 2004. Structure and function of arginases. J Nutr 134:2760S–2764S.Google Scholar
  183. 183.
    Shi O, Morris SM Jr, Zoghbi H, Porter CW, O'Brien WE. 2001. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol Cell Biol 21:811–813.PubMedGoogle Scholar
  184. 184.
    Bewley MC, Jeffrey PD, Patchett ML, Kanyo ZF, Baker EN. 1999. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activations, inhibition and catalysis in the arginase superfamily. Structure 7:435–448.PubMedGoogle Scholar
  185. 185.
    Cama E, Colleluori DM, Emig FA, Shin H, Kim SW, Kim NN, Traish AM, Ash DE, Christianson DW. 2003. Human arginase II: crystal structure and physiological role in male and female sexual arousal. Biochemistry 42:8445–8451.PubMedGoogle Scholar
  186. 186.
    Cama E, Pethe S, Boucher J, Han S, Emig FA, Ash DE, Viola RE, Mansuy D, Christianson DW. 2004. Inhibitor coordination interactions in the binuclear manganese cluster of arginase. Biochemistry 43:8987–8999.PubMedGoogle Scholar
  187. 187.
    Cox JD, Kim NN, Traish AM, Christianson DW. 1999. Arginase-boronic acid complex highlights a physiological role in erectile function. Nat Struct Biol 6:1043–1047.PubMedGoogle Scholar
  188. 188.
    Di Costanzo L, Pique ME, Christianson DW. 2007. Crystal structure of human arginase I complexes with thiosemicarbazide reveals an unusual thiocarbonyl µ-sulfide ligand in the binuclear manganese cluster. J Am Chem Soc 129:6388–6389.PubMedGoogle Scholar
  189. 189.
    Kim NN, Cox JD, Baggio RF, Emig FA, Mistry SK, Harper SL, Speicher DW, Morris SM Jr, Ash DE, Traish A, Christianson DW. 2001. Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry 40:2678–2688.PubMedGoogle Scholar
  190. 190.
    Shin H, Cama E, Christianson DW. 2004. Design of the amino acid aldehydes as transition-state analogue inhibitors of arginase. J Am Chem Soc 126:10278–10284.PubMedGoogle Scholar
  191. 191.
    Sossong TM Jr, Khangulov SV, Cavalli RC, Soprano DR, Dismukes GC, Ash DE. 1997. Catalysis of dinuclear Mn(II) centers: hydrolytic and redox activites of rat liver arginase. J Biol Inorg Chem 1997:433–443.Google Scholar
  192. 192.
    Reczkowski RS, Ash DE. 1992. EPR evidence for binuclear Mn(II) centers in rat liver arginase. J Am Chem Soc 114:10992–10994.Google Scholar
  193. 193.
    Khangulov SV, Sossong TM Jr, Ash DE, Dismukes GC. 1998. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Biochemistry 37:8539–8550.PubMedGoogle Scholar
  194. 194.
    . Kuhn NJ, Talbot J, Ward S. 1991. pH-Sensitive control of arginase by manganese(II) ions at submicromolar concentrations. Arch Biochem Biophys 286:217–221.PubMedGoogle Scholar
  195. 195.
    Baggio R, Elbaum D, Kanyo ZF, Carroll PJ, Cavalli RC, Ash DE, Christianson DW. 1997. Inhibition of Mn2(II)-arginase by borate leads to the design of a transition state analog inhibitor, 2-(S)-amino-6-boronohexanoic acid. J Am Chem Soc 119:8107–8108.Google Scholar
  196. 196.
    Custot J, Boucher J-L, Vadon S, Guedes C, Dijols S, Delaforge M, Mansuy D. 1996. N ω-hydroxyamino-α-amino acids as a new class of very strong inhibitors of arginases. J Biol Inorg Chem 1:73–82.Google Scholar
  197. 197.
    Daghigh F, Fukuto JM, Ash DE. 1994. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun 202:174–180.PubMedGoogle Scholar
  198. 198.
    Custot J, Moali C, Brollo M, Boucher JL, Delaforge M, Mansuy D, Tenu JP, Zimmermann JL. 1997. The new α-amino acid N ω-hydroxy-nor-L-arginine: a high-affinity inhibitor of arginase well adapted to bind to its manganese cluster. J Am Chem Soc 119:4086–4087.Google Scholar
  199. 199.
    Lavulo LT, Emig FA, Ash DE. 2002. Functional consequences of the G235R mutation in liver arginase leading to hyperargininemia. Arch Biochem Biophys 399:49–55.PubMedGoogle Scholar
  200. 200.
    Lowther WT, Matthews BW. 2000. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167.PubMedGoogle Scholar
  201. 201.
    Lowther WT, Matthews BW. 2002. Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4607.PubMedGoogle Scholar
  202. 202.
    Bradshaw RA, Yi E. 2002. Methionine aminopeptidases and angiogenesis. Essays Biochem 38:65–78.PubMedGoogle Scholar
  203. 203.
    Folkman J. 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31.PubMedGoogle Scholar
  204. 204.
    Bernier SG, Westlin WF, Hannig G. 2005. Fumagillin class inhibitors of methionine aminopeptidase-2. Drugs Future 30:497–508.Google Scholar
  205. 205.
    Griffith EC, Su Z, Turk BE, Chen S, Chang Y-H, Wu Z, Biemann K, Liu JO. 1997. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. Chem Biol 4:461–471.PubMedGoogle Scholar
  206. 206.
    Kruger EA, Figg WD. 2000. TNP-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Invest Drugs 9:1383–1396.Google Scholar
  207. 207.
    Liu S, Widom J, Kemp CW, Crews CM, Clardy J. 1998. Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282:1324–1327.PubMedGoogle Scholar
  208. 208.
    Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW 1999. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant and inhibited enzymes for the mechanism of catalysis. Biochemistry 38:7678–7688.PubMedGoogle Scholar
  209. 209.
    Oefner C, Douangamath A, D'Arcy A, Häfeli S, Mareque D, MacSweeney A, Padilla J, Pierau S, Schulz H, Thormann M, Wadman S, Dale GE. 2003. The 1.15 Å crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors. J Mol Biol 332:13–21.PubMedGoogle Scholar
  210. 210.
    Tahirov TH, Oki H, Tsukihara T, Ogasahara K, Yutani K, Ogata K, Izu Y, Tsunasawa S, Kato I. 1998. Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J Mol Biol 284:101–124.PubMedGoogle Scholar
  211. 211.
    D'souza VM, Holz RC. 1999. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry 38:11079–11085.PubMedGoogle Scholar
  212. 212.
    Walker KW, Bradshawe RA. 1998. Yeast methionine aminopeptidase I can utilise either Zn(II) or Co(II) as a cofactor: a case of mistaken identity? Protein Sci 7:2684–2687.PubMedGoogle Scholar
  213. 213.
    Wang J, Sheppard GS, Lou P, Kawai M, Park C, Egan DA, Schneider A, Bouska J, Lesniewski R, Henkin J. 2003. Physiologically relevant metal cofactor for methionine aminopeptidase-2 is manganese. Biochemistry 42:5035–5042.PubMedGoogle Scholar
  214. 214.
    Cosper NJ, D'souza VM, Scott RA, Holz RC. 2001. Structural evidence that the methionyl aminopeptidase from Escherichia coli is a mononuclear metalloprotease. Biochemistry 40:13302–13309.PubMedGoogle Scholar
  215. 215.
    Meng L, Ruebush S, D'souza VM, Copik AJ, Tsunasawa S, Holz RC. 2002. Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 41:7199–7208.PubMedGoogle Scholar
  216. 216.
    Lowther WT, McMillen DA, Orville AM, Matthews BW. 1998. The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the Escherichia coli methionine aminopeptidase. Proc Natl Acad Sci USA 95:12153–12157.PubMedGoogle Scholar
  217. 217.
    D'souza VM, Brown RS, Bennett B, Holz RC. 2005. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. J Biol Inorg Chem 10:41–50.PubMedGoogle Scholar
  218. 218.
    Lowther WT, Zhang Y, Sampson PB, Honek JF, Matthews BW. 1999. Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues. Biochemistry 38:14810–14819.PubMedGoogle Scholar
  219. 219.
    Copik AJ, Nocek BP, Swierczek SI, Ruebush S, Jang SB, Meng L, D'souza VM, Peters JW, Bennett B, Holz RC. 2005. EPR and X-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 44:121–129.PubMedGoogle Scholar
  220. 220.
    Pethe S, Boucher J-L, Mansuy D. 2002. Interaction of anions with rat liver arginase: specific inhibitory effects of fluoride. J Inorg Biochem 88:397–402.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sarah J. Smith
    • 1
  • Kieran S. Hadler
    • 1
  • Gerhard Schenk
    • 1
  • Graeme R. Hanson
    • 2
  • Nataša Mitić
    • 1
  1. 1.School of Chemistry and Molecular BiosciencesThe University of QueenslandSt. LuciaAustralia
  2. 2.Center for Magnetic ResonanceThe University of QueenslandBrisbaneAustralia

Personalised recommendations