Dimethylsulfoxide (DMSO) Reductase, a Member of the DMSO Reductase Family of Molybdenum Enzymes

  • Graeme R. Hanson
  • Ian Lane
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)


Herein we describe the application of continuous wave (CW) and pulsed EPR spectroscopy to the structural (geometric and electronic) characterization of the Mo(V) active site within dimethylsulfoxide (DMSO) reductase and where appropriate, model molybdenum(V) complexes. Specifically, the electronic and geometric structure of the Low-g and High-g EPR signals and their relevance to the enzymes’ catalytic cycle are described. CW and pulsed EPR studies of a dithionite-reduced sample of DMSO reductase reveal the presence of a sulfur-centered radical localized on the molybdenum cofactor.


Hyperfine Coupling Sulfite Oxidase Molybdenum Atom Electron Paramagnetic Reso DMSO Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hille R. 1996. The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816.PubMedCrossRefGoogle Scholar
  2. 2.
    Kisker C, Schindelin H, Rees DC. 1997. Molybdenum cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267.PubMedCrossRefGoogle Scholar
  3. 3.
    Bray RC 1988. The inorganic biochemistry of molybdoenzymes. Q Rev Biophys 21:299–329.PubMedCrossRefGoogle Scholar
  4. 4.
    Enemark JH, Young CG. 1993. Bioinorganic chemistry of of pterin-containing molybdenum and tungsten enzymes. Adv Inorg Chem 40:1–88.CrossRefGoogle Scholar
  5. 5.
    Romao MJ, Huber R. 1998. Structure and function of the xanthine-oxidase family of molybdenum enzymes. Struct Bonding 90:69–95.Google Scholar
  6. 6.
    Hille R. 2004. Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367.CrossRefGoogle Scholar
  7. 7.
    Rajagopalan KV, Johnson JL. 1992. The pterin molybdenum cofactors. J Biol Chem 267:10199–10202.PubMedGoogle Scholar
  8. 8.
    Rajagopalan KV. 1991. Novel aspects of the biochemistry of the molybdenum cofactor. Adv Enzymol Relat Subj Biochem 64:215–290.CrossRefGoogle Scholar
  9. 9.
    Johnson JL. 1980. The molybdenum cofactor common to nitrate reductase, xanthine dehydrogenase and sulfite oxidase. In Molybdenum and molybdenum-containing enzymes, pp. 345–383. Ed MP Coughlan. New York: Pergamon Press.Google Scholar
  10. 10.
    Kramer SP, Johnson JL, Ribeiro AA, Millington DS, Rajagopalan KV. 1987. The structure of molybdenum cofactor. J Biol Chem 262:16357–16363.PubMedGoogle Scholar
  11. 11.
    Romao MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R. 1995. Crystal structure of the xanthine oxidase-related aldehyde oxidoreductase from D. gigas. Science 270:1170–1176.Google Scholar
  12. 12.
    Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF. 2000. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA 97:10723–10728.PubMedCrossRefGoogle Scholar
  13. 13.
    Huber R, Hof P, Duarte RO, Moura JJG, Liu M, LeGall J, Hille R, Archer M, Romao MJ. 1996. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc Natl Acad Sci USA 93:8846–8851.PubMedCrossRefGoogle Scholar
  14. 14.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garret RM, Rajagopalan KV, Enemark JH, Rees DC. 1997. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983.PubMedCrossRefGoogle Scholar
  15. 15.
    Hille R. 1996. Structure and function of mononuclear molybdenum Enzymes. J Biol Inorg Chem 1:397–404.CrossRefGoogle Scholar
  16. 16.
    McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. 2002. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 44:1575–1587.PubMedCrossRefGoogle Scholar
  17. 17.
    Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Caneiro C, Moura JJG, Moura I, Romao MJ. 1999. Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Struct Folding Design 7:65–79.CrossRefGoogle Scholar
  18. 18. The RCSB protein databank can be accessed through the following web address: <>.
  19. 19.
    Bastian NR, Kay CJ, Barber MJ, Rajagopalan KV. 1991. Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f.sp. denitrificans. J Biol Chem 266:45–51.PubMedGoogle Scholar
  20. 20.
    Benson N, McEwan AG, Farra JA, Thompson AJ. 1992. Detection of the optical bands of molybdenum(V) in DMSO reductase (Rhodobacter capsulatus) by low-temperature MCD spectroscopy. FEBS Lett 307:169–172.PubMedCrossRefGoogle Scholar
  21. 21.
    Finnegan MG, Hilton J, Rajagopalan KV, Johnson MK. 1993. Optical transitions of molybdenum(V) in glycerol-inhibited DMSO reductase from Rhodobacter sphaeroides. Inorg Chem 32:2616–2617.CrossRefGoogle Scholar
  22. 22.
    Bennett B, Benson N, McEwan AG, Bray RC. 1994. Multiple states of the molybdenum centre of DMSO reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur J Biochem 225:321–331.PubMedCrossRefGoogle Scholar
  23. 23.
    Li H-K, Temple C, Rajagopalan KV, Schindelin H. 2000. The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethylsulfoxide reductase reveals two distinct molybdenum coordination environments. J Am Chem Soc 122:7673–7680.CrossRefGoogle Scholar
  24. 24.
    McAlpine AS, McEwan AG, Bailey S. 1998. The high resolution crystal structure of DMSO reductase in complex with DMSO. J Mol Biol 275:613–623.PubMedCrossRefGoogle Scholar
  25. 25.
    Steifel EI. 1997. Chemical keys to molybdenum enzymes. J Chem Soc Dalton Trans 3915–3923.CrossRefGoogle Scholar
  26. 26.
    Gutteridge S, Bray RC. 1980. Studies by electron paramagnetic resonance on the nature and reactions of the molybdenum centre of xanthine oxidase. In Molybdenum and molybdenum-containing enzymes, pp. 221–239. Ed MP Coughlan. New York: Pergamon Press.Google Scholar
  27. 27.
    Bray RC. 1980. EPR of molybdenum containing enzymes. In Biological magnetic resonance, Vol. 2, pp. 45–84. Ed J Reuben, LJ Berliner. New York: Plenum Press.Google Scholar
  28. 28.
    Bray RC 1961. The chemistry of xanthine oxidase: electron-spin-resonance measurements during the enzymic reaction. Biochem J 81:196–199.PubMedGoogle Scholar
  29. 29.
    Palmer G, Bray RC, Beinert H. 1964. Direct studies on the electron transfer sequence in xanthine oxidase by electron paramagnetic resonance spectroscopy: techniques and description of spectra. J Biol Chem 239:2657–2665.PubMedGoogle Scholar
  30. 30.
    Wilson GL. 1988. Multifrequency electron paramagnetic resonance of xanthine oxidase and relevant analogue complexes. PhD Thesis, LaTrobe University, Melbourne, Australia.Google Scholar
  31. 31.
    Wilson GL, Greenwood RJ, Pilbrow JR, Spence JT, Wedd AG. 1991. Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of molybdenum-95 and sulfur-33 hyperfine coupling. J Am Chem Soc 113:6803–6812.CrossRefGoogle Scholar
  32. 32.
    Wilson GL, Kony M, Tiekink ERT, Pilbrow JR, Spence JT, Wedd AG. 1988. Oxygen-17 and molybdenum-95 coupling in spectroscopic models of molybdoenzymes. J Am Chem Soc 110:6923–6925.CrossRefGoogle Scholar
  33. 33.
    Weil JA, Bolton JR, Wertz JE. 2007. Electron paramagnetic resonance, elementary theory and practical applications. Weinheim: Wiley Interscience.Google Scholar
  34. 34.
    Pilbrow JR 1990. Transition ion paramagnetic resonance. New York: Oxford UP.Google Scholar
  35. 35.
    Hanson GR, Noble CJ, Benson S. 2009. Molecular Sophe, an integrated approach to the structural characterization of metalloproteins, the next generation of computer simulation software. In Biological magnetic resonance, Vol. 28, pp. 105–174. Ed GR Hanson, LJ Berliner. New York: Springer.Google Scholar
  36. 36.
    Neese F. 2009. Spin-Hamiltonian parameters from first principle calculations: theory and application. In Biological magnetic resonance, Vol. 28, pp. 175–229. GR Hanson, LJ Berliner. New York: Springer.Google Scholar
  37. 37.
    Holden NE. 1998. In CRC Handbook of chemistry and physics, pp. 42–146. Ed DR Lide, HPR Frederikse. New York: CRC Press.Google Scholar
  38. 38.
    Hanson GR, Wilson GL, Bailey TD, Pilbrow JR, Wedd AG. 1987. Multifrequency electron spin resonance of molybdenum(V) and tungsten(V) compounds. J Am Chem Soc 109:2609–2616.CrossRefGoogle Scholar
  39. 39.
    Drew SC, Hill JP, Lane I, Hanson GR, Gable RW, Young CG. 2007. Synthesis, structural characterization and multifrequency electron paramagnetic resonance studies of mononuclear thiomolybdenyl complexes. Inorg Chem 46:2373–2387.PubMedCrossRefGoogle Scholar
  40. 40.
    Dowerah D, Spence JT, Singh R, Wedd AG, Wilson GL, Farchione F, Enemark JH, Kristofzski J, Bruck M. 1987. Molybdenum(VI) and molybdenum(V) complexes with N,N′-dimethyl-N,N′-bis(2-mercaptophenyl) ethylenediamine: electrochemical and electron paramagnetic resonance models for the molybdenum(VI/V) centers of the molybdenum hydroxylases and related enzymes. J Am Chem Soc 109:5655–5665.CrossRefGoogle Scholar
  41. 41.
    Hanson GR, Brunette AA, McDonnell AC, Murray KS, Wedd AG. 1981. Electronic properties of thiolate compounds of oxomolybdenum(V) and their tungsten and selenium analogues: effects of 17O, 98Mo, and 95Mo isotope substitution upon ESR spectra. J Am Chem Soc 103:1953–1959.CrossRefGoogle Scholar
  42. 42.
    Drew SC, Young CG, Hanson GR. 2007. A density functional study of the electronic structure and spin Hamiltonian parameters of mononuclear thiomolybdenyl complexes. Inorg Chem 46:2388–2397.PubMedCrossRefGoogle Scholar
  43. 43.
    Enemark JH, Astashkin AV, Raitsimring AM. 2008. Structures and reaction pathways of the molybdenum centers of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Biochem Soc Trans 36:1129–1133.PubMedCrossRefGoogle Scholar
  44. 44.
    Astashkin AV, Johnson-Winters K, Klein EL, Byrne RS, Hille R, Raitsimring AM, Enemark JH. 2007. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy. J Am Chem Soc 129:14800–14810.PubMedCrossRefGoogle Scholar
  45. 45.
    Feng C, Tollin G, Enemark JH. 2007. Sulfite oxidizing enzymes. Biochim Biophys Acta 1774:527–539.PubMedGoogle Scholar
  46. 46.
    Enemark JH, Astashkin AV, Raitsimring AM. 2006. Investigation of the coordination structures of the molybdenum(V) sites of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Dalton Trans 3501–3514.PubMedCrossRefGoogle Scholar
  47. 47.
    Lorigan GA, Britt RD, Kim JH, Hille R. 1994. Electron spin echo envelope modulation spectroscopy of the molybdenum center of xanthine oxidase. Biochim Biophys Acta 1185:284–294.PubMedCrossRefGoogle Scholar
  48. 48.
    Howes BD, Bray RC, Richards RL, Turner NA, Bennett B, Lowe DJ. 1996. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17O- and 13C-ENDOR and kinetic studies. Biochemistry 35:1432–1443.PubMedCrossRefGoogle Scholar
  49. 49.
    Manikandan P, Choi E-Y, Hille R, Hoffman BM. 2001. 35-GHz ENDOR investigation of the “very rapid” signal of xanthine oxidase reacted with 8-[13C]-2-hydroxy-6-methylpurine. J Am Chem Soc 123:2658–2663.PubMedCrossRefGoogle Scholar
  50. 50.
    Astashkin AV, Johnson-Winters K, Klein EL, Feng C, Wilson HL, Rajagopalan KV, Raitsimring AM, Enemark JH. 2008. Structural studies of the molybdenum center of the pathogenic R160Q mutant of human sulfite oxidase by pulsed EPR spectroscopy and 17O and 33S labeling. J Am Chem Soc 130:8471–8480.PubMedCrossRefGoogle Scholar
  51. 51.
    Hanson GR, Gates KE, Noble C, Griffin M, Mitchell A, Benson S. 2004. Xsophe–Sophe–XeprView: a computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. J Inorg Biochem 98:903–916.PubMedCrossRefGoogle Scholar
  52. 52.
    Bennett B, Benson N, McEwan AG, Bray RC. 1994. EPR characterisation of the molybdenum centre of Rhodobacter capsulatus dimethyl sulfoxide reductase: new signals on reduction with Na2S2O4. Biochem Soc Trans 22:285S.PubMedGoogle Scholar
  53. 53.
    Beversa LE, Hagedoorna P-L, Hagen WR. 2009. The bioinorganic chemistry of tungsten. Coord Chem Rev 253:269–290.CrossRefGoogle Scholar
  54. 54.
    Johnson MK, Rees DC, Adams MWW. 1996. Tungstoenzymes. Chem Rev 96:2817–2839.CrossRefGoogle Scholar
  55. 55.
    Simala-Grant JL, Weiner JH. 1998. Modulation of the substrtate specificity of Escherichia coli dimethylsulfoxide reductase. Eur J Biochem. 251:510–515.PubMedCrossRefGoogle Scholar
  56. 56.
    Cammack R, Weiner JH. 1990. electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29:8410–8416.PubMedCrossRefGoogle Scholar
  57. 57.
    Simala-Grant JL, Weiner JH. 1996. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology 142:3231–3239.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao Z, Weiner JH. 1998. Interaction of 2-n-heptyl-4-hydroxyquinoline-N-oxide with dimethylsulfoxide reductase of Escherichia coli. J Biol Chem 273:20758–20763.Google Scholar
  59. 59.
    Trieber CA, Rothery RA, Weiner JH. 1996. Consequences of removal of a molybdenum ligand (DmsA-Ser-176) of Escherichia coli dimethylsulfoxide reductase. J Biol Chem 271:27339–27345.PubMedCrossRefGoogle Scholar
  60. 60.
    Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC. 1996. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621.PubMedCrossRefGoogle Scholar
  61. 61.
    Schneider F, Lowe J, Huber R, Schindelin H, Kisker C, Knablein J. 1996. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 angstrom resolution. J Mol Biol 263:53–69.PubMedCrossRefGoogle Scholar
  62. 62.
    McAlpine AS, McEwan AG, Shaw AL, Bailey S. 1997. Molybdenum active centre of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidised enzyme at 1.82 Å resolution and the dithionite-reduced enzyme at 2.8 Å resolution. J Biol Inorg Chem 2:690–701.CrossRefGoogle Scholar
  63. 63.
    George GN, Hilton J, Rajagopalan KV. 1996. X-ray absorption spectroscopy of dimethyl sulfoxide reductase from Rhodobacter sphaeroides. J Am Chem Soc 118:1113–1117.CrossRefGoogle Scholar
  64. 64.
    Baugh PE, Garner CD, Charnock JM, Collison D, Davies ES, McAlpine AS, Bailey S, Lane I, Hanson GR, McEwan AG. 1997. X-ray absorption spectroscopy of dimethyl-sulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem 2:634–643.CrossRefGoogle Scholar
  65. 65.
    Kilpatrick L, Rajagopalan KV, Hilton J, Bastian NR, Stiefel EI, Pilato RS, Spiro TG. 1995. Resonance raman spectroscopic characterization of the molybdopterin active site of DMSO reductase. Biochemistry 34:3032–3039.PubMedCrossRefGoogle Scholar
  66. 66.
    Garton SD, Hilton J, Oku H, Crouse BR, Rajagopalan KV, Johnson JL 1997. Active site structures and catalytic mechanism of Rhodobacter sphaeroides dimethyl sulfoxide reductase as revealed by resonance Raman spectroscopy. J Am Chem Soc 119:12906–12916.CrossRefGoogle Scholar
  67. 67.
    Bray RC, Knowles PF, Pick FM, Vänngård T. 1968. Electron-spin-resonance evidence for interaction of protons with Mo(V) in reduced forms of xanthine oxidase. Biochem J 107:601–602.PubMedGoogle Scholar
  68. 68.
    Gutteridge S, Tanner SJ, Bray RC. 1978. Comparison of the centres of native and desulpho xanthine oxidase: the nature of the cyanide-labile sulphur atom and the proton-accepting group. Biochem J 175:887–897.PubMedGoogle Scholar
  69. 69. Lane I, Drew SC, Noble CJ, McEwan AG, Pilbrow JR, Hanson GR. 2009. EPR studies of sulfur centered radicals and the Low-g Type-I Mo(V) Species in dimethylsulfoxide reductase: implications for catalysis and electron transfer. Submitted.Google Scholar
  70. 70.
    Mabbs FE, Collison D. 1992. Electron paramagnetic resonance of d transition metal cvompounds. Amsterdam: Elsevier.Google Scholar
  71. 71.
    Drew SC, Hanson GR. 2009. Determination of the metal–dithiolate fold angle in mononuclear molybdenum(V) centers by EPR spectroscopy. Inorg Chem 48:2224–2232.PubMedCrossRefGoogle Scholar
  72. 72.
    Ohitani M, Ohkishi S, Kajitani M, Akiyama T, Sugimori A, Yamauchi S, Ohba Y, Iwaizumi M. 1992. Direct observations of the intermediate species in the photodissociation of bis(S-benzyl-1,2-diphenyl-1,2-ethylenedithiolato) nickel by time-resolved EPR and UV-visible absorption spectroscopy. Inorg Chem 31:3873–3874.CrossRefGoogle Scholar
  73. 73.
    Coves J, Le Hir de Fallois L, Le Pape L, Decout J-L, Fontecave M. 1996. Inactivation of Escherichia coli ribonucleotide reductase by 2′-deoxy-2′-mercaptouridine 5′- diphosphate. electron paramagnetic resonance evidence for a transient protein perthiyl radical. Biochemistry 35:8595–8602.PubMedCrossRefGoogle Scholar
  74. 74.
    Kolberg M, Bleifuss G, Gräslund A, Sjoberg B-M, Lubitz W, Lendzian F, Lassaman G. 2002. Protein thiyl radicals directly observed by EPR spectroscopy. Arch Biochem Biophys 403:141–144.PubMedCrossRefGoogle Scholar
  75. 75.
    Lassmann G, Kolberg M, Bleifuss G, Graslund A, Sjoberg B-M, Lubitz W. 2003. Protein thiyl radicals in disordered systems: a comparative EPR study at low temperature. Phys Chem Chem Phys 5:2442–2453.CrossRefGoogle Scholar
  76. 76.
    Fauth J-M, Schweiger A, Branschweiler L, Forrer J, Ernst RR. 1986. Elimination of unwanted echoes and reduction of dead time in three-pulse electron spin-echo spectroscopy. J Magn Reson 66:74–85.Google Scholar
  77. 77.
    Kimura S, Bill E, Bothe E, Weyhermuller T, Weighardt K. 2001. Phenylthiyl radical complexes of Gallium(III), Iron(III), and Cobalt(III) and comparison with their phenoxyl analogues. J Am Chem Soc 123:6025–6039.PubMedCrossRefGoogle Scholar
  78. 78.
    Ghosh P, Begum A, Herebian D, Bothe E, Hildenbrand K, Weyhermuller T, Weighardt K. 2003. Coordinated o-dithio- and o-iminothiobenzosemiquinonate(1-) π radicals in [MII(bpy)(L)](PF6) complexes. Angew Chem Int Ed 42:563–567.CrossRefGoogle Scholar
  79. 79.
    Ray K, Weyhermuller T, Goossens A, Craje MW, Weighardt K. 2003. Do S,S′-coordinated o-dithiobenzosemiquinonate(1−) radicals exist in coordination compounds? The [AuIII(1,2-C6H4S2)2]1−/0 couple. Inorg Chem 42:4082–4087.PubMedCrossRefGoogle Scholar
  80. 80.
    Schweiger A, Jeschke, G. 2001. Principles of pulse electron paramagnetic resonance. Oxford: Oxford UP.Google Scholar
  81. 81.
    Harmer J, Mitrikas G, Schweiger A. 2009. Advanced pulse EPR methods for the characterization of metalloproteins. In Biological magnetic resonance, Vol. 28, pp. 13–61. Ed GR Hanson, LJ Berliner. New York: Springer.Google Scholar
  82. 82.
    Höfer P, Grupp A, Nebenfuhr H, Mehring M. 1986. Hyperfine sublevel correlation (HYSCORE) spectroscopy: a 2D ESR investigation of the squaric acid radical. Chem Phys Lett 132:279–282.CrossRefGoogle Scholar
  83. 83.
    Dikanov SA, Davydov RM, Graslund A, Bowman MK. 1998. Two-dimensional ESEEM spectroscopy of nitrogen hyperfine couplings in methemerythrin and azidomethemerythrin. J Am Chem Soc 120:6797–6805.CrossRefGoogle Scholar
  84. 84.
    Dikanov SA, Tyryshkin AM, Huttermann J, Bogumil R, Witzel H. 1995. Characterization of histidine coordination in VO2+-substituted D-xylose isomerase by orientationally-selected electron spin-echo envelope modulation spectroscopy. J Am Chem Soc 117:4976–4986.CrossRefGoogle Scholar
  85. 85.
    Solomon PS, Lane I, Hanson GR, McEwan AG. 1997. Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Eur J Biochem 246:200–203.CrossRefGoogle Scholar
  86. 86.
    Luykx DMAM, Duine JA, de Vries S. 1998. Molybdopterin radical in bacterial aldehyde dehydrogenases. Biochemistry 37:11366–11375.PubMedCrossRefGoogle Scholar
  87. 87.
    McEwan AG, Richardson DJ, Hudig H, Ferguson SJ, Jackson JB. 1989. Identification of cytochromes involved in electron transport to trimethylamine N-oxide/dimethyl-sulphoxide reductase in Rhodobacter capsulatus. Biochim Biophys Acta 973:308–314.CrossRefGoogle Scholar
  88. 88.
    Shaw AL, Hochkoeppler A, Bonora P, Zannoni D, Hanson GR, McEwan AG. 1999. Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J Biol Chem 274:9911–9914.PubMedCrossRefGoogle Scholar
  89. 89.
    Westcott BL, Gruhn NE, Enemark JH. 1998. Evaluation of molybdenum-sulfur interactions in molybdoenzyme model complexes by gas-phase photoelectron spectroscopy: the “electronic buffer” effect. J Am Chem Soc 120:3382–3386.CrossRefGoogle Scholar
  90. 90.
    Stubbe J, van der Donk WA. 1998. Protein radicals in enzyme catalysis. Chem Rev 98:705–762.PubMedCrossRefGoogle Scholar
  91. 91.
    Rebelo JM, Dias JM, Huber R, Moura JJG, Romao MJ. 2001. Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 Å. J Biol Inorg Chem 6:791–800.PubMedCrossRefGoogle Scholar
  92. 92.
    Benson N. 1994. Biochemical and spectroscopic studies of dimethylsulfoxide reductase from Rhodobacter capsulatus. PhD Thesis. University of East Anglia, United Kingdom.Google Scholar
  93. 93.
    Aguey-Zinsou K-F, Bernhardt PV, McEwan AG, Ridge JP. 2002. The first nonturnover voltammetric response from a molybdenum enzyme: direct electrochemistry of dimethylsulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem 7:879–883.CrossRefGoogle Scholar
  94. 94. Lane I, Noble CJ, Ridge J, Benson N, McEwan AG, Hanson GR. 2009. Structural characterisation of the Mo(V) high-g unsplit species from Rhodobacter capsulatus dimethylsulfoxide reductase. In preparation.Google Scholar
  95. 95.
    Lane I. 2004. Electron paramagnetic resonance studies of Rhodobacter capsulatus dimethylsulfoxide reductase, model Mo(V) and W(V) complexes and metallotolyporphyrins. PhD Thesis. The University of Queensland, Brisbane, Australia.Google Scholar
  96. 96.
    Raitsimring AM, Astanshkin AV, Feng C, Enemark JH, Nelson KJ, Rajagopalan KV. 2003. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethylsulfoxide reductase. J Biol Inorg Chem 8:95–104.PubMedCrossRefGoogle Scholar
  97. 97.
    Adams B, Smith AT, Bailey S, McEwan AG, Bray RC. 1999. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry. Biochemistry 38:8501–8511.PubMedCrossRefGoogle Scholar
  98. 98.
    Bray RC, Adams B, Smith AT, Richards RL, Lowe DJ, Bailey S. 2001. Reactions of dimethylsulfoxide reductase in the presence of dimethyl sulfide and the structure of the dimethyl sulfide-modified enzyme. Biochemistry 40:9810–9820.PubMedCrossRefGoogle Scholar
  99. 99.
    Steifek EI, Eisenberg R, Rosenberg RC, Gray HB. 1966. Characterization and electronic structures of six-coordinate trigonal-prismatic complexes. J Am Chem Soc 88: 2956–2966.CrossRefGoogle Scholar
  100. 100.
    Cervilla A, Llopis E, Marco D, Pérez F. 2001. X-ray structure of (Bun4N)[Mo(1,2- benzenedithiolate)3]. trigonal-prismatic versus octahedral coordination in Tris(1,2-benzenedithiolate) complexes. Inorg Chem 40:6525–6528.PubMedCrossRefGoogle Scholar
  101. 101.
    Smith PD, Cooney JA, McInnes EJL, Beddoes RL, Collison D, Harben SM, Helliwell M, Mabbs FE, Mandel A, Powell AK, Garner CD. 2001. New molybdenum(V) analogues of amavadin and their redox properties. J Chem Soc Dalton Trans 3108–3114.CrossRefGoogle Scholar
  102. 102.
    Yadav HS, Armstrong EM, Beddoes RL, Collison D, Garner CD. 1994. The molybdenum analogue of amavadin. J Chem Soc Chem Commun 5:605–606.CrossRefGoogle Scholar
  103. 103.
    George GN, Bray RC, Morpeth FF, Boxer DH. 1985. Complexes with halide and other anions of the molybdenum centre of nitrate reductase from Escherichia coli. Biochem J 227:925–931.Google Scholar
  104. 104.
    George GN, Turner NA, Bray RC, Morpeth FF, Boxer DH, Cramer SP. 1989. X-ray-absorption and electron-paramagnetic-resonance spectroscopic studies of the environment of molybdenum in high-pH and low-pH forms of Escherichia coli nitrate reductase. Biochem J 259:693–700.PubMedGoogle Scholar
  105. 105.
    Heffron K, Legr C, Rothery RA, Weiner JH, Armstrong FA. 2001. Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway. Biochemistry 40:3117–3126.PubMedCrossRefGoogle Scholar
  106. 106.
    Webster CE, Hall MB. 2001. The theoretical transition state structure of a model complex bears a striking resemblance to the active site structure of DMSO reductase. J Am Chem Soc 123:5820–5821.PubMedCrossRefGoogle Scholar
  107. 107.
    Vallee BL, William RJP. 1968. Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci USA 59:498–505.PubMedCrossRefGoogle Scholar
  108. 108.
    Williams RJP. 1995. Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins. Eur J Biochem 234:363–381. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Magnetic ResonanceThe University of QueenslandSt. LuciaAustralia

Personalised recommendations