High-Resolution EPR Spectroscopy of Mo Enzymes. Sulfite Oxidases: Structural and Functional Implications

  • John H. Enemark
  • A. V. Astashkin
  • A. M. Raitsimring
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)


Sulfite oxidases (SOs) are physiologically vital Mo-containing enzymes that occur in animals, plants, and bacteria and which catalyze the oxidation of sulfite to sulfate, the terminal reaction in the oxidative degradation of sulfur-containing compounds. X-ray structure determinations of SOs from several species show nearly identical coordination structures of the molybdenum active center, and a common catalytic mechanism has been proposed that involves the generation of a transient paramagnetic Mo(V) state through a series of coupled electron–proton transfer steps. This chapter describes the use of pulsed electron-nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopic techniques to obtain information about the structure of this Mo(V) species from the hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of nearby magnetic nuclei. Variable frequency instrumentation is essential to optimize the experimental conditions for measuring the couplings of different types of nuclei (e.g., 1H, 2H, 31P, and 17O). The theoretical background necessary for understanding the ESEEM and ENDOR spectra of the Mo(V) centers of SOs is outlined, and examples of the use of advanced pulsed EPR methods (RP-ESEEM, HYSCORE, integrated four-pulse ESEEM) for structure determination are presented. The analysis of variable-frequency pulsed EPR data from SOs is aided by parallel studies of model compounds that contain key functional groups or that are isotopically labeled and thus provide benchmark data for enzymes. Enormous progress has been made on the use of high-resolution variable-frequency pulsed EPR methods to investigate the structures and mechanisms of SOs during the past ~15 years, and the future is bright for the continued development and application of this technology to SOs, other molybdenum enzymes, and other problems in metallobiochemistry.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum ENDOR Spectrum Electron Spin Echo Envelope Modulation Sulfite Oxidase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hille R. 1996. The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816.CrossRefPubMedGoogle Scholar
  2. 2.
    Hille R. 1996. Structure and function of mononuclear molybdenum enzymes. J Biol Inorg Chem 1:397–404.CrossRefGoogle Scholar
  3. 3.
    George GN, Kipke CA, Prince RC, Sunde RA, Enemark JH, Cramer SP. 1989. Structure of the active site of sulfite oxidase: x-ray absorption spectroscopy of the Mo(IV), Mo(V), and Mo(VI) oxidation states. Biochemistry 28:5075–5080.CrossRefPubMedGoogle Scholar
  4. 4.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC. 1997. Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983.CrossRefPubMedGoogle Scholar
  5. 5.
    Kisker C, Schindelin H, Rees DC. 1997. Molybdenum-cofactor-containing enzymes: structure and mechanism. Ann Rev Biochem 66:233–267.CrossRefPubMedGoogle Scholar
  6. 6.
    Karakas E, Wilson HL, Graf TN, Xiang S, Jaramillo-Busquets S, Rajagopalan KV, Kisker C. 2005. Structural insights into sulfite oxidase deficiency. J Biol Chem 280(39):33506–33515.CrossRefPubMedGoogle Scholar
  7. 7.
    Bray RC. 1988. The inorganic biochemistry of molybdoenzymes. Q Rev Biophys 21:299–329.CrossRefPubMedGoogle Scholar
  8. 8.
    George GN, Garrett RM, Prince RC, Rajagopalan KV. 1996. The molybdenum site of sulfite oxidase: a comparison of wild-type and the cysteine 207 to serine mutant using x-ray absorption spectroscopy. J Am Chem Soc 118:8588–8592.CrossRefGoogle Scholar
  9. 9.
    Schrader N, Fischer K. Theis K, Mendel RR, Schwarz G, Kisker C. 2003. The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 11:1251–1263.CrossRefPubMedGoogle Scholar
  10. 10.
    Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille T, Hänsch R, Mendel RR. 2001. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase a new player in plant sulfur metabolism. J Biol Chem 276:46989–46994.CrossRefPubMedGoogle Scholar
  11. 11.
    Kappler, U, Bailey S. 2005. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280:24999–25007.CrossRefPubMedGoogle Scholar
  12. 12.
    Toghrol F, Southerland, WM. 1983. Purification of Thiobacillus novellus sulfite oxidase: evidence for the presence of heme and molybdenum. J Biol Chem 258:6762–6766.PubMedGoogle Scholar
  13. 13.
    Kappler U, Bennett B, Rethmeieri J, Schwarz G, Deutzmann R, McEwan AG, Dahl C. 2000. Sulfite:cytochrome c oxidoreductase from Thiobacillus novellu. J Biol Chem 275:13202–13212.CrossRefGoogle Scholar
  14. 14.
    Barber MJ, Neame PJ. 1990. A conserved cysteine in molybdenum oxotransferases. J Biol Chem 265:20912–20915.PubMedGoogle Scholar
  15. 15.
    Garton SG, Garrett RM, Rajagopalan KV, Johnson MK. 1997. Resonance Raman characterization of the molybdenum center in sulfite oxidase: identification of Mo=O stretching modes. J Am Chem Soc 119:2590–2591.CrossRefGoogle Scholar
  16. 16.
    Lamy MT, S. Gutteridge S, Bray RC. 1980. Electron-paramagnetic-resonance parameters of molybdenum(V) in sulphite oxidase from chicken liver. Biochem J 185:397–403.PubMedGoogle Scholar
  17. 17.
    Gutteridge S, Lamy MT, Bray RC. 1980. The nature of the phosphate inhibitor complex of sulphite oxidase from electron-paramagnetic-resonance studies using oxygen-17. Biochem J 191:285–288.PubMedGoogle Scholar
  18. 18.
    Bray RC, Gutteridge S, Lamy MT, Wilkinson T. 1983. Equilibria amongst different molybdenum(V)-containing species from sulphite oxidase: evidence for a halide ligand of molybdenum in the low-pH species. Biochem J 211:227–236.PubMedGoogle Scholar
  19. 19.
    Bray RC, Gutteridge S, Lamy MT, Wilkinson T. 1982. Evidence from electron-paramagnetic-resonance spectroscopy for a complex of sulphite ions with the molybdenum centre of sulphite oxidase. Biochem J 201:241–243.PubMedGoogle Scholar
  20. 20.
    Cramer SP, Johnson JL, Rajagopalan KV, Sorrell TS. 1979. Observation of 17O effects on Mov EPR spectra in sulfite oxidase; xanthine dehydrogenase, and MoO(SC6H5)4. Biochem Biophys Res Commun 91:434–439.CrossRefPubMedGoogle Scholar
  21. 21.
    George GN. 1985. The proton spin-flip lines of Mo(V) EPR signals from sulfite oxidase and xanthine oxidase. J Magn Reson 64:384–394.Google Scholar
  22. 22.
    Dikanov SA, Tsvetkov Yu D. 1992. Electron spin-echo envelope modulation (ESEEM) spectroscopy. Boca Raton, FL: CRC Press.Google Scholar
  23. 23.
    Raitsimring AM, Astashkin AV, Baute D, Goldfarb D, Caravan P. 2004. W-band 17O pulsed electron nuclear double resonance study of gadolinium complexes with water. J Phys Chem A 108:7318–7323.CrossRefGoogle Scholar
  24. 24.
    Liao PF, Hartmann SR. 1973. Determination of Cr–Al hyperfine and electric quadrupole interaction parameters in ruby using spin-echo electron-nuclear double resonance. Phys Rev B 8:69–80.CrossRefGoogle Scholar
  25. 25.
    Schweiger A, Jeschke G. 2001. Principles of pulse electron paramagnetic resonance. Oxford: Oxford UP.Google Scholar
  26. 26.
    Höfer P, Grupp A, Nebenfüher H, Mehring M. 1986. Hyperfine sublevel correlation (HYSCORE) spectroscopy: a 2D ESR investigation of the squaric acid radical. Chem Phys Lett 132:279–282.CrossRefGoogle Scholar
  27. 27.
    Epel B, Arieli D, Baute D, Goldfarb D. 2003. Improving W-band pulsed ENDOR sensitivity—random acquisition and pulsed special TRIPLE. J Magn Reson 164:78–83.CrossRefPubMedGoogle Scholar
  28. 28.
    Mims WB. 1965. Pulsed ENDOR experiment. Proc Roy Soc 283A:452–457.Google Scholar
  29. 29.
    Davies ER. 1974. A new pulse ENDOR technique. Phys Lett A 47:1–2.CrossRefGoogle Scholar
  30. 30.
    Doan PE, Hoffman BM. 1997. Making hyperfine selection in Mims ENDOR independent of deadtime. Chem Phys Lett 269:208–214.CrossRefGoogle Scholar
  31. 31.
    Astashkin AV, Raitsimring AM. 2000. Refocused primary echo: a zero dead time detection of the ESEEM. J Magn Reson 143:280–291.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Doorslaer S, Schweiger A. 1997. A two-dimensional sum combination frequency pulse EPR experiment. Chem Phys Lett 281:297–305.CrossRefGoogle Scholar
  33. 33.
    Raitsimring A, Astashkin AV, Feng C, Enemark JH, Nelson K, Rajagopalan KV. 2003. Pulsed EPR studies of the exchangeable proton at the molybdenum center of dimethyl sulfoxide reductase. J Biol Inorg Chem 8:95–104.CrossRefPubMedGoogle Scholar
  34. 34.
    Cosper M, Neese F, Astashkin AV, Carducci MD, Raitsimring A, Enemark JH. 2005. Determination of the g-tensors and their orientations for cis,trans-(L–N 2 S 2)MoVOX (X = Cl, SCH2Ph) by single-crystal EPR spectroscopy and molecular orbital calculations. Inorg Chem 44:1290–1301.CrossRefPubMedGoogle Scholar
  35. 35.
    Astashkin AV, Hood BL, Feng C, Hille R, Mendel RR, Raitsimring AM, Enemark JH. 2005. Structures of the Mo(V) forms of sulfite oxidase from Arabidopsis thaliana by pulsed EPR spectroscopy. Biochemistry 44:13274–13281.CrossRefPubMedGoogle Scholar
  36. 36.
    Codd R, Astashkin AV, Pacheco A, Raitsimring AM, Enemark JH 2002. Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one–electron reduction with Ti(III) citrate. J Biol Inorg Chem 7:338–350.CrossRefPubMedGoogle Scholar
  37. 37.
    Kappler U, McEwan AG. 2002. A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterization of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella. FEBS Lett 529:208–214.CrossRefPubMedGoogle Scholar
  38. 38.
    Temple CA, Graf TN, Rajagopalan KV. 2000. Optimization of expression of human sulfite oxidase and its molybdenum domain. Arch Biochem Biophys 383:281–287.CrossRefPubMedGoogle Scholar
  39. 39.
    Raitsimring AM, Pacheco A, Enemark JH. 1998. ESEEM investigation of the high and low pH forms of chicken liver Sulfite Oxidase. J Am Chem Soc 120:11263–11273.CrossRefGoogle Scholar
  40. 40.
    Borbat P, Raitsimring A. 1994. A new pulse EPR spectrometer at the University of Arizona. In Abstracts of 36th Rocky Mountain Conference on Analytical Chemistry, Denver, CO, July 31–Aug 5, 1994, p. 94.Google Scholar
  41. 41.
    Astashkin AV, Raitsimring A, Walker FA. 1999. Two- and four-pulse ESEEM studies of the heme binding center of a low spin ferriheme proteine: the importance of a multifrequency approach. Chem Phys Lett 306:9–17.CrossRefGoogle Scholar
  42. 42.
    Astashkin AV, Raitsimring A, Enemark JH. 2006. 26.5–40 GHz Ka-band pulsed EPR spectrometer. Conc Magn Reson B (Magn Reson Engineering) 29B:125–136.CrossRefGoogle Scholar
  43. 43.
    Raitsimring A, Kappler U, Feng C, Astashkin AV, Enemark JH. 2005. Pulsed EPR studies of a bacterial sulfite-oxidizing enzyme with pH-invariant hyperfine interactions from exchangeable protons. Inorg Chem 44:7283–7285.CrossRefPubMedGoogle Scholar
  44. 44.
    Astashkin A, Mader ML, Pacheco A, Enemark JH, Raitsimring A. 2000. Direct detection of the proton-containing group coordinated to Mo(V) in high-pH form of chicken liver sulfite oxidase. J Am Chem Soc 122:5294–5302.CrossRefGoogle Scholar
  45. 45.
    Astashkin AV, Raitsimring AM, Feng C, Johnson JL, Rajagopalan KV, Enemark JH. 2002. The Mo–OH proton of the low-pH form of sulfite oxidase: comparison of the hyperfine interactions obtained from pulsed ENDOR, CW-EPR and ESEEM measurements. Appl Magn Reson 22:421–430.CrossRefGoogle Scholar
  46. 45a.
    Wilson GL, Greenwood RJ, Pilbrow JR, Spence JT, Wedd AG. 1991. Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of molybdenum–95 and sulfur-33 hyperfine coupling. J Am Chem Soc 113:6803–6812.CrossRefGoogle Scholar
  47. 46.
    Pacheco A, Basu P, Borbat P, Raitsimring AM, Enemark JH. 1996. Multi-frequency ESEEM spectroscopy of sulfite oxidase in phosphate buffer: direct evidence for coordinated phosphate. Inorg Chem 35:7001–7006.CrossRefPubMedGoogle Scholar
  48. 47.
    Dikanov SA, Liboiron BD, Thompson KH, Violet EV, Yuen G, McNeill JH, Orvig C. 1999. In vivo electron spin-echo envelope modulation (ESEEM) spectroscopy: first observation of vanadyl coordination to phosphate in bone. J Am Chem Soc 121:11004–11005 [see comment as ref. [20] therein: Variation of the hf couplings for three P atoms can be attributed to different O–V–O(–P) angles. The isotropic constant is proportional to the unpaired 3s spin density and the coefficient 13306 MHz computed for a unit 3s electron. The anisotropic coupling results from dipole–dipole interaction (mainly from the V–P distance), and indirect spin transfer on a 3p orbital of P. A V–P distance of 3.44 Å for a V–O–P fragment in ADP complexes corresponds to T = 0.79 MHz for point dipoles; computed T for a unit 3p electron is 367 MHz. Thus, the isotropic coupling should be far more sensitive to structural variations than the anisotropic coupling.]CrossRefGoogle Scholar
  49. 48.
    Buy C, Matsui T, Andrianambininstoa S, Sigalat C, Girault G, Zimmerman J-L. 1996. Binding sites for Mg(II) in H+-ATPase from Bacillus PS3 and in the subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for -His-324. Biochemistry 35:14281–14293.CrossRefPubMedGoogle Scholar
  50. 49.
    Mustafi D, Telser J, Makinen MW. 1992. Molecular geometry of vanadyl–adenine nucleotide complexes determined by EPR, ENDOR, and molecular modeling. J Am Chem Soc 114:6219–6226.CrossRefGoogle Scholar
  51. 50.
    Astashkin AV, Raitsimring AM, Feng C, Johnson JL, Rajagopalan KV, Enemark JH. 2002. Pulsed EPR studies of nonexchangeable protons near the Mo(V) center of sulfite oxidase: direct detection of the α-proton of the coordinated cysteinyl residue and structural implications for the active site. J Am Chem Soc 124:6109–6118.CrossRefPubMedGoogle Scholar
  52. 51.
    Greenwood RJ, Wilson GL, Pilbrow JR, Wedd AG. 1993. Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: comparison of oxygen-17 hyperfine coupling. J Am Chem Soc 115:5385–5392.CrossRefGoogle Scholar
  53. 52.
    Hanson GR, Wilson GL, Bailey TD, Pilbrow JR, Wedd AG. 1987. Multifrequency electron spin resonance of molybdenum(V) and tungsten(V) compounds. J Am Chem Soc 109:2609–2626.CrossRefGoogle Scholar
  54. 53.
    Hanson GR, Brunette AA, McDonell AC, Murray KS, Wedd AG. 1981. Electronic properties of thiolate compounds of oxomolybdenum(V) and their tungsten and selenium analogs: effects of oxygen-17, molybdenum-98, and molybdenum-95 isotope substitution upon ESR spectra. J Am Chem Soc 103:1953–1959.CrossRefGoogle Scholar
  55. 54.
    Boyd IW, Dance IG, Murray KS, Wedd AG. 1978. Mononuclear oxo-thiolato compounds of molybdenum(V). Aust J Chem 31:279–284.Google Scholar
  56. 55. D. Goldfarb, private communication. (New W-band spectrometer which is scheduled to be completed in 2007 will be able generate a 15 ns π-pulse providing >30 MHz of B1.)Google Scholar
  57. 56.
    Astashkin AV, Feng C, Raitsimring AM, Enemark JH. 2005. 17O ESEEM evidence for exchange of the axial oxo ligand in the molybdenum center of the high pH form of sulfite oxidase. J Am Chem Soc 127:502–503.CrossRefPubMedGoogle Scholar
  58. 57.
    Astashkin AV, Neese F, Raitsimring AM, Cooney JJA, Bultman E, Enemark JH. 2005. Pulsed EPR investigations of systems modeling molybdenum enzymes: hyperfine and quadrupole parameters of Oxo–17O in [Mo17O(SPh)4]. J Am Chem Soc 127:16713–16723.CrossRefPubMedGoogle Scholar
  59. 58.
    Dance IG, Wedd AG, Boyd IW. 1978. The formation and molecular structure of the di-µ-oxo-di[di(benzenethiolato)oxomolybdate(V)] dianion. Aust J Chem 31:519–526.Google Scholar
  60. 59.
    Bradbury JR, Mackay MF, Wedd AG. 1978. The crystal and molecular structure of tetraphenylarsonium tetrakis(benzenethiolato)oxomolybdate(V). Aust J Chem 31:2423–2430.Google Scholar
  61. 60.
    Boyd W, Dance IG, Landers AE, Wedd AG. 1979. Triply bridged binuclear thiolate complexes of oxomolybdenum(V): synthesis of [Mo2O2(SR)6Z] (Z = OR′, SR′, NR2′) and crystal structures of (Et4N)[Mo2O2(SCH2CH2O)2Cl3, (Et4N) [Mo2O2(SCH2CH2O)3Cl] and (Pr3NH)[Mo2O2(SCH2CH2O)3(SCH2CH2OH)]. Inorg Chem 18:1875–1885.CrossRefGoogle Scholar
  62. 61.
    Cleland Jr WE, Barnhart KM, Yamanouchi K, Collison D, Mabbs FE, Ortega RB, Enemark JH. 1987. Syntheses, structures, and spectroscopic properties of six-coordinate mononuclear oxo-molybdenum(V) complexes stabilized by the hydrotris(3,5-dimethyl-1-pyrazolyl)borate ligand. Inorg Chem 26:1017–1025.CrossRefGoogle Scholar
  63. 62.
    Kappler U, Bailey S, Feng C, Honeychurch M, Hanson GR, Bernhardt PV, Tollin G, Enemark JH. 2006. Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo-active site in a bacterial sulfite dehydrogenase. Biochemistry 45:9696–9705.CrossRefPubMedGoogle Scholar
  64. 63.
    Cohen HJ, Fridovich I, Rajagopalan KV. 1971. Hepatic sulfite oxidase: a functional role for molybdenum. J Biol Chem 246(2):374–382.PubMedGoogle Scholar
  65. 64.
    Enemark JH, Astashkin AV, Raitsimring AM. 2006. Investigation of the coordination structures of the molybdenum(V) sites of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Dalton Trans 29:3501–3514.CrossRefPubMedGoogle Scholar
  66. 65.
    Astashkin AV, Johnson-Winters K, Klein EL, Byrne RS, Hille R, Raitsimring AM, Enemark JH. 2007. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy. J Am Chem Soc 129:14800–14810.CrossRefPubMedGoogle Scholar
  67. 66.
    Raitsimring AM, Astashkin AV, Feng C, Wilson HL, Rajagopalan KV, Enemark JH. 2008. Studies of the Mo(V) center of the Y343F mutant of human sulfite oxidase by variable frequency pulsed EPR spectroscopy. Inorg Chim Acta 361:941–946.CrossRefGoogle Scholar
  68. 67.
    Astashkin AV, Johnson-Winters K, Klein EL, Feng C, Wilson HL, Rajagopalan KV, Raitsimring AM, Enemark JH. 2008. Structural studies of the molybdenum center of the pathogenic R160Q mutant of human sulfite oxidase by pulsed EPR spectroscopy and 17O and 33S labeling. J Am Chem Soc 130:8471–8480.CrossRefPubMedGoogle Scholar
  69. 68. Rapson TD, Ashtashkin AV, Johnson-Winters K, Kappler U, Raitsimring AM, Enemark JH. Pulsed EPR investigations of the Mo(V) centers of the R55Q and R55M variants of sulfite dehydrogenase from Starkeya novella. Manuscript in preparation.Google Scholar
  70. 69.
    Klein EL, Astashkin, AV, Ganyushin D, Riplinger C, Johnson-Winters K, Neese F, Enemark JH. 2009. Direct detection and characterization of chloride in the active site of the low-pH form of sulfite oxidase using electron spin echo envelope modulation spectroscopy, isotopic labeling, and density functional theory calculations. Inorg Chem 48:4743–4752.CrossRefPubMedGoogle Scholar
  71. 70.
    Enemark JH, Astashkin AV, Raitsimring AM. 2008. Structures and reaction pathways of the molybdenum centres of sulfite-oxidizing enzymes by pulsed EPR spectroscopy. Biochem Soc Trans 36:1129–1133.CrossRefPubMedGoogle Scholar
  72. 71.
    Doonan CJ, Wilson HL, Rajagopalan KV, Garrett RM, Bennett B, Prince RC, George GN. 2007. Modified active site coordination in a clinical mutant of sulfite oxidase. J Am Chem Soc 129:9421.CrossRefPubMedGoogle Scholar
  73. 72.
    Goldfarb D, Lipkin Y, Potapov A, Gorodetsky Y, Epel B, Raitsimring AM, Radoul M, Kaminker I. 2008. HYSCORE and DEER with an upgraded 95 GHz pulse EPR spectrometer. J Magn Reson 194:8–15.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • John H. Enemark
    • 1
  • A. V. Astashkin
    • 1
  • A. M. Raitsimring
    • 1
  1. 1.Department of ChemistryUniversity of ArizonaTucsonUSA

Personalised recommendations