Advertisement

Hyperfine and Quadrupolar Interactions in Vanadyl Proteins and Model Complexes: Theory and Experiment

  • Sarah C. Larsen
  • N. Dennis Chasteen
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)

Abstract

The oxycation VO2+ has been employed for many years as an EPR spin probe of the metal binding sites in proteins. Its utility in these investigations has increased markedly with the advent and widespread use of high-resolution techniques such as ENDOR, ESEEM, and HYSCORE to measure isotropic and dipolar components of ligand hyperfine couplings. Measurements with model complexes in conjunction with DFT calculations have provided new insights into the dependence of g-factors and ligand and 51V nuclear hyperfine couplings on the electronic structure and coordination geometries of VO2+ chelates. These studies have greatly enhanced the information that can be derived from data with proteins. In the past fifteen years, highresolution techniques have been applied to a variety of VO2+- containing proteins and tissues samples, a number of which are reviewed here.

Keywords

Density Functional Theory Electron Paramagnetic Resonance Spectrum Density Functional Theory Calculation Density Functional Theory Method Hyperfine Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boucher LJ, Tynan EC, Yen TF. 1969. Properties of oxovanadium(IV) complexes, IV: correlations of ESR spectra with ligand type. In Electron spin resonance of metal complexes. pp. 111–130. Ed TF Yen. New York: Plenum.Google Scholar
  2. 2.
    Chasteen ND. 1981. Vanadyl(IV) EPR spin probes: Inorganic and biochemical aspects. In Biological magnetic resonance, Vol. 3, pp. 53–119. Ed LJ Berliner, J Reuben. New York: Plenum.Google Scholar
  3. 3.
    Chasteen ND. 1983. The biochemistry of vanadium. In Structure and bonding, Vol. 53, pp. 107–138. Berlin: Springer-Verlag.Google Scholar
  4. 4.
    Eaton SS, Eaton GR. 1990. Biological applications of EPR, ENDOR and ESEEM spectroscopy. In Vanadium in biological systems: physiology and biochemistry, pp. 199–222. Ed ND Chasteen. Dordrecht: Kluwer Academic.Google Scholar
  5. 5.
    Makinen MW, Mustafi D. 1995. The vanadyl ion: molecular structure of coordinating ligands by electron paramagnetic resonance and electron nuclear double resonance. In metal ions in biological systems: vanadium and its role in life, Vol. 31, pp. 89–127. Ed H Sigel, A Sigel. New York: Marcel Dekker.Google Scholar
  6. 6.
    Mustafi D. Makinen MW. 2005. Application of angle-selected electron nuclear double resonance to characterize structured solvent in small molecules and macromolecules. In Biological magnetic resonance, Vol. 24: Biomedical EPR, part B: methodology, instrumentation and dynamics. pp. 89–144. Ed SS Eaton, GR Eaton, LJ Berliner. New York: Kluwer Academic/Plenum.Google Scholar
  7. 7.
    Smith II TS, LoBrutto R, Pecoraro VL. 2002. Paramagnetic spectroscopy of vanadyl complexes and its applications to biological systems. Coord Chem Rev 228:1–18.CrossRefGoogle Scholar
  8. 8.
    Chasteen ND, ed. 1990. Vanadium in biological systems, pp. 1–225. Dordrecht: Kluwer Academic.Google Scholar
  9. 9.
    Butler A, Carrano CJ. 1991. Coordination chemistry of vanadium in biological systems. Coord Chem Rev 109:61–105.CrossRefGoogle Scholar
  10. 10.
    Sigel H, Sigel A, eds. 1995. Metal ions in biological systems: vanadium and its role in life, Vol. 31. New York: Marcel Dekker.Google Scholar
  11. 11.
    Tracy AS, Crans DC, eds. 1998. Vanadium compounds: chemistry biochemistry and therapeutic applications. ACS Symposium Series 711, pp. 1–381. Washington, DC: American Chemical Society.Google Scholar
  12. 12.
    Rehder D. 2003. Biological and medicinal aspects of vanadium. Inorg Chem Commun 6:604–617.CrossRefGoogle Scholar
  13. 13.
    Linquist RN, Lynn Jr JL, Lienhard GE. 1973. Possible transition-state analogs for ribonuclease: complexes of uridine with oxovanadium(IV) ion and vanadium(V) ion. J Am Chem Soc 95:8762–8768.CrossRefGoogle Scholar
  14. 14.
    Priebsch W, Rehder D. 1990. Dichlorobis(N,N-dimethylacetamide) oxovanadium(IV). Acta Cryst C46(4): 568–570.Google Scholar
  15. 15.
    Cornman CR, Geiser-Bush KM, Rowley SP, Boyle PD. 1997. Structural and electron paramagnetic resonance studies of the square pyramidal to trigonal bipyramidal distortion of vanadyl complexes containing sterically crowded schiff base ligands. Inorg Chem 36:6401–6408.CrossRefGoogle Scholar
  16. 16.
    Chasteen ND, Snetsinger PA. 2000. ESEEM and ENDOR spectroscopy. In Physical Methods of Bioinorganic Chemistry: Spectroscopy and Magnetism, pp. 187–231. Ed L Que Jr. Sausalito, CA: University Science Books.Google Scholar
  17. 17.
    Schweiger A, Jeschke G. 2001. Principles of pulse electron paramagnetic resonance. New York: Oxford UP.Google Scholar
  18. 18.
    Holyk NM. 1979. An electron paramagnetic resonance study of model oxovanadium(IV) complexes in aqueous solution: correlation of magnetic properties with ligand type and metal chelate structure, pp. 1–121. MS thesis, University of New Hampshire.Google Scholar
  19. 19.
    Hyde JS, Froncisz W. 1982. The role of microwave frequency in EPR spectroscopy of copper complexes. Ann Rev Biophys Bioeng 11:391–417.CrossRefGoogle Scholar
  20. 20.
    Manoharan PT, Rogers MT. 1969. ESR study of copper(II) and silver(II) tetraphenyl-porphyrin. In Electron spin resonance of metal complexes, pp. 143–173. Ed TF Yen. New York: Plenum.Google Scholar
  21. 21.
    Hyde JS, Pasenkiewicz-Gierula M, Jesmanowicz A, Antholine WE. 1990. Pseudo-field modulation EPR spectroscopy. Appl Magn Reson 1:483–496.CrossRefGoogle Scholar
  22. 22.
    Hyde JS, Jesmanowicz A, Pake JJ, Antholine WE. 1992. Pseudomodulation: a computer-based strategy for resolution enhancement. J Magn Reson 96:1–13.Google Scholar
  23. 23.
    Fukui K, Ohya-Nishiguchi H, Kamada H. 1993. Electron spin echo envelope modulation study of oxovanadium(IV)–porphyrin complexes: reinvestigation of hyperfine and quadrupole couplings of pyrrole nitrogen. J Phys Chem 97:11858–11860.CrossRefGoogle Scholar
  24. 24.
    Chasteen ND. 1993. Vanadyl(IV) electron nuclear double resonance/electron spin echo envelope modulation spin probes. In Methods in enzymology, Metallobiochemistry, Part E: Physical and spectroscopic methods for probing metal ion environments in metalloproteins, Vol. 227, pp. 232–244. Ed JF Riordan, BL Vallee. New York: Academic Press.CrossRefGoogle Scholar
  25. 25.
    Chasteen ND. 1995. Vanadium–protein interactions. In Metal ions in biological systems: vanadium and its role in life, Vol. 31, pp. 231–247. Ed H Sigel, A Sigel. New York: Marcel Dekker.Google Scholar
  26. 26.
    Hofer P, Grupp A, Nebenfuhr H, Mehring M. 1986. Hyperfine sublevel correlation (HYSCORE) spectroscopy: a 2D ESR investigation of the squaric acid radical. Chem Phys Lett 132(3):279–282.CrossRefGoogle Scholar
  27. 27.
    de Boer E, Keijzers CP, Reijerse EJ, Collison D, Garner CD, Wever R. 1988. N-14 Coordination to VO2+ in reduced vanadium bromoperoxidase: an electron–spin echo study. FEBS Lett 235:93–97.CrossRefGoogle Scholar
  28. 28.
    Eaton SS, Dubach J, More KM, Eaton GR, Thurman G, Ambruso DR. 1989. Comparison of the electron spin echo envelope modulation (ESEEM) for human lactoferrin and transferrin complexes of copper(II) and vanadyl ion. J Biol Chem 254:4776–4781.Google Scholar
  29. 29.
    Reijerse EJ, Tyryshkin AM, Dikanov SA. 1998. Complete determination of nitrogen quadrupole and hyperfine tensors in an oxovanadium complex by simultaneous fitting of multifrequency ESEEM powder spectra. J Magn Reson 131:295–309.PubMedCrossRefGoogle Scholar
  30. 30.
    Gerfen J, Hanna PM, Chasteen ND, Singel DJ. 1991. Characterization of the ligand environment of vanadyl complexes of apoferritin by multifrequency electron spin–echo envelope modulation. J Am Chem Soc 113:9513–9519.CrossRefGoogle Scholar
  31. 31.
    LoBrutto R, Hamstra BJ, Colpas GJ, Pecoraro VL, Frasch WD. 1998. Electron spin echo envelope modulation spectroscopy reveals and distinguishes equatorial and axial nitrogen ligands bound to VO2+. J Am Chem Soc 120:4410–4416.CrossRefGoogle Scholar
  32. 32.
    Larsen SC, Singel DJ. 1992. Multifrequency ESEEM spectroscopy of ammonia adsorbed on silica-supported reduced molybdenum oxide. J Phys Chem 96:10594–10597.CrossRefGoogle Scholar
  33. 33.
    Magliozzo RS, Peisach J. 1993. Evaluation of nitrogen nuclear hyperfine and quadrupole coupling parameters for the proximal imidazole in myoglobin-azide, -cyanide, and -mercaptoethanol complexes by electron spin echo envelope modulation spectroscopy. Biochemistry 32:8446–8456.PubMedCrossRefGoogle Scholar
  34. 34.
    Dikanov SA, Tryshkin AM, Hüttermann J, Bogumil R, Witzel H. 1995. Characterization of histidine coordination in VO2+-substituted D-xylose isomerase by orientationally-selected electron spin-echo envelope modulation spectroscopy. J Am Chem Soc 117:4976–4986.CrossRefGoogle Scholar
  35. 35.
    Peterson J, Hawkes TR, Lowe DJ. 1998. Nitrogen coordination in VO2+-substituted imidazole glycerol phosphate dehydratase studied by electron spin-echo envelope modulation spectroscopy. J Am Chem Soc 120:10978–10979.CrossRefGoogle Scholar
  36. 36.
    Buy C, Matsui T, Andrianambinintsoa S, Sigalat C, Girault G, Zimmermann J-L. 1996. Binding sites for Mg(II) in H+-ATPase from Bacillus PS3 and the α3β3γ subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of the oxovanadium(IV) complexes: a possible role for β-His-324. Biochemistry 35:14281–14293.PubMedCrossRefGoogle Scholar
  37. 37.
    Mulks CF, Kirste B, van Willigen H. 1982. ENDOR Study of VO2+–imidazole complexes in frozen aqueous solution. J Am Chem Soc 104:5906–5911.CrossRefGoogle Scholar
  38. 38.
    Dikanov SA, Burgard C, Hüttermann J. 1993. Determination of the hyperfine coupling with the remote nitrogen of the VO2+–(imidazole)4 complex by ESEEM spectroscopy. Chem Phys Lett 212:493–498.CrossRefGoogle Scholar
  39. 39.
    Zhang C, Markham GD LoBrutto, R. 1993. Coordination of vanadyl(IV) cation in complexes of S-adenosylmehtionine synthetase: multi-frequency electron spin echo envelope modulation study. Biochemistry 32:9866–9873.PubMedCrossRefGoogle Scholar
  40. 40.
    Tipton PA, McCracken J, Cornelius JB, Peisach J. 1989. Electron spin echo envelope modulation studies of pyruvate kinase active site complexes. Biochemistry 28:5720–5728.PubMedCrossRefGoogle Scholar
  41. 41.
    Flanagan HL, Singel DJ. 1987. Analysis of nitrogen-14 ESEEM patterns of randomly oriented solids. J Chem Phys 87:5606–5616.CrossRefGoogle Scholar
  42. 42.
    Shane JJ, Hofer P, Reijerse EJ, Deboer E. 1992. Hyperfine sublevel correlation spectroscopy (HYSCORE) of disordered solids. J Magn Reson 99:596–604.Google Scholar
  43. 43.
    Dikanov SA, Tyryshkin AM, Bowman MK. 2000. Intensity of cross-peaks in HYSCORE spectra of S = 1/2, I = 1/2 spin systems. J Magn Reson 144:228–242.PubMedCrossRefGoogle Scholar
  44. 44.
    Fukui K, Ohya-Nishiguchi H, Kamada H. 1997. 14N coupling parameters in oxovanadium(IV)–amine, –imine, –isothiocynate complexes studied by electron spin echo envelope modulation spectroscopy. Inorg Chem 36:5518–5529.CrossRefGoogle Scholar
  45. 45.
    Astashkin AV, Dikanov SA, Tsvetkov YD. 1985. Coordination of vanadyl acetylacetonate with nitrogen-containing donor bases. J Struct Chem 26:363–368.CrossRefGoogle Scholar
  46. 46.
    Reijerse EJ, Shane J, de Boer E, Collison D, eds. 1989. ESEEM of nitrogen coordinated oxo-vanadium(IV) complexes: electron magnetic resonance of disordered systems. Singapore: World Scientific.Google Scholar
  47. 47.
    Atherton NM, Shackleton JF. 1980. Proton ENDOR of VO(H2O)5 2+ in Mg(NH4)2(SO4)26H2O. Mol Phys 39:1471–1485.CrossRefGoogle Scholar
  48. 48.
    van Willigen H. 1980. Proton ENDOR on VO(H2O)5 2+ in solid solution. J Magn Reson 39:37–46.Google Scholar
  49. 49.
    Mustafi D, Makinen MW. 1988. ENDOR-determined solvation structure of VO2+ in frozen solution. Inorg Chem 27:3360–3368.CrossRefGoogle Scholar
  50. 50.
    Dikanov SA, Yudanov VF, Tsvetkiv YD. 1979. Electron spin-echo studies of weak hyperfine interactions with ligands in some VO2+ complexes in frozen glassy solution. J Magn Reson 34:631–645.Google Scholar
  51. 51.
    Tryshkin AM, Dikanov SA, Evelo RG, Hoff AJ. 1992. Properties of the combination harmonic spectra of primary electron spin echo envelope modulation of orientationally selected disordered systems: application to aqua–oxovanadium complexes. J Chem Phys 97:42–49.CrossRefGoogle Scholar
  52. 52.
    Tolis EJ, Manos MJ, Tasiopoulos AJ, Raptopoulou CP, Terzis A, Sigalas MP, Deligiannakis Y, Kabanos TA. 2002. Monomeric compounds containing the cis-[V(=O)(OH)]+ core. Angew Chem Int Ed 41(15):2797–2801.CrossRefGoogle Scholar
  53. 53.
    Baute D, Goldfarb D. 2005. The 17O hyperfine interaction in [(V17O)(H2 17O)5]2+ and [Mn(H2 17O)6]2+ determined by high field ENDOR aided by DFT calculations. J Phys Chem A 109(35):7865–7871.PubMedCrossRefGoogle Scholar
  54. 54.
    Mustafi D, Tesler J, Makinen MW. 1992. Molecular geometry of vanadyl-adenine nucleotide complexes determined by EPR, ENDOR and molecular modeling. J Am Chem Soc 114(16):6219–6226.CrossRefGoogle Scholar
  55. 55.
    Dikanov SA, Liboiron BD, Orvig C. 2002. Two-diminsional (2D) pulsed electron paramagnetic resonance study of VO2+–triphosphate interactions: evidence for tridentate triphosphate coordination, and relevance to bone uptake and insulin enhancement by vanadium pharmaceuticals. J Am Chem Soc 124:2969–2978.PubMedCrossRefGoogle Scholar
  56. 56.
    Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C. 1999. In vivo electron spin-echo envelope modulation (ESEEM) spectroscopy: first observation of vanadyl coordination to phosphate in bone. J Am Chem Soc 121(47):11004–11005.CrossRefGoogle Scholar
  57. 57.
    Grant CV, Ball JA, Hamstra BJ, Pecoraro V, Britt RD. 1998. 51V ESE–ENDOR studies of oxovanadium(IV) complexes: investigation of the nuclear quadrupole interaction. J Phys Chem B 102:8145–8150.CrossRefGoogle Scholar
  58. 58.
    Grant CV, Cope W, Ball JA, Maresch GG, Gaffney BJ, Fink W, Britt RD. 1999. Electronic structure of the aqueous vanadyl ion probed by 9 and 94 GHz EPR and pulsed ENDOR spectroscopies and density functional theory calculations. J Phys Chem B 103:10627–10631.PubMedCrossRefGoogle Scholar
  59. 59.
    Grant CV, Geiser-Bush KM, Cornman CR, Britt RD. 1999. Probing the molecular geometry of five-coordinate vanadyl complexes with pulsed ENDOR. Inorg Chem 38:6285–6288.PubMedCrossRefGoogle Scholar
  60. 60.
    Aznar CP, Deligiannakis Y, Tolis EJ, Kabanos T, Brynda M, Britt D. 2004. ESE–ENDOR study and DFT calculations on oxovanadium compounds: effect of axial anionic ligands on the V-51 nuclear quadrupolar coupling constant. J Phys Chem A 108(19):4310–4321.CrossRefGoogle Scholar
  61. 61.
    Munzarova M, Kaupp M. 1999. A critical validation of density functional and coupled cluster approaches for the calculation of EPR coupling constants in transition metal complexes. J Phys Chem A 103:9966–9983.CrossRefGoogle Scholar
  62. 62.
    Munzarova ML, Kaupp M. 2001. A density functional study of EPR parameters for vanadyl complexes containing Schiff base ligands. J Phys Chem B 105:12644–12652.CrossRefGoogle Scholar
  63. 63.
    Saladino AC, Larsen SC. 2003. Density functional theory calculations of nitrogen hyperfine and quadrupole coupling constants in oxovanadium(IV) complexes. J Phys Chem A 107:4735–4740.CrossRefGoogle Scholar
  64. 64.
    Schreckenbach G, Ziegler T. 1997. Calculation of g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399.CrossRefGoogle Scholar
  65. 65.
    van Lenthe E, Wormer PES, van der Avoird A. 1997. Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. J Chem Phys 107:2488–2498.CrossRefGoogle Scholar
  66. 66.
    van Lenthe E, van der Avoird A, Wormer PES. 1998. Density functional calculations of molecular hyperfine interactions in the zero order regular order approximation for relativistic effects. J Chem Phys 108:4783–4796.CrossRefGoogle Scholar
  67. 67.
    Patchkovskii S, Ziegler T. 1999. Predicion of electron paramagnetic resonance g tensors of transition metal complexes using density functional theory: first applications to some axial d1 MEX4 systems. J Chem Phys 111:5730–5740.CrossRefGoogle Scholar
  68. 68.
    Malkina OL, Vaara J, Schimmelpfennig B, Munzarova M, Malkin VG, Kaupp M. 2000. Density functional calculations of electronic g-tensors using spin-orbit pseudopotentials and mean-field all-electron spin-orbit operators. J Am Chem Soc 122:9206–9218.CrossRefGoogle Scholar
  69. 69.
    Munzarova ML, Kubacek P, Kaupp M. 2000. Mechanisms of EPR hyperfine coupling in transition metal complexes. J Am Chem Soc 122:11900–11913.CrossRefGoogle Scholar
  70. 70.
    Patchkovskii S, Ziegler T. 2000. Prediction of EPR g-tensors in simple d1 metal porphyrins with density functional theory. J Am Chem Soc 122:3506–3516.CrossRefGoogle Scholar
  71. 71.
    Kaupp M, Reviakine R, Malkina OL, Arbuznikov A, Schimmelpfennig B, Malkin VG. 2002. Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic meanfield spin-orbit operators. J Comput Chem 23:794–803.PubMedCrossRefGoogle Scholar
  72. 72.
    Arbuznikov AV, Kaupp M. 2005. Localized hybrid exchange-correlation Potentials for Kohn-Sham DFT calculations of NMR and EPR parameters. Int J Quant Chem 104(2):261–271.CrossRefGoogle Scholar
  73. 73.
    Neese F. 2005. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 122(3):1–13.CrossRefGoogle Scholar
  74. 74.
    Remenyi C, Munzarova ML, Kaupp M. 2005. Comparative density-functional study of the electron paramagnetic resonance parameters of amavadin. J Phys Chem B 109(9):4227–4233.PubMedCrossRefGoogle Scholar
  75. 75.
    Te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler T. 2001. Chemistry with ADF. J Comput Chem 22(22):931–967.CrossRefGoogle Scholar
  76. 76.
    Baerends EJ, Autschbach JA, Bérces A, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacobsen H, van Kessel G, Kootstra F, van Lenthe E, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Sola M, Swart M, Swerhone D, Te Velde G, Vernooijs P, Versluis L, Visser O, van Wezenbeek E, Wiesenekker G, Wolff SK, Woo TK, Ziegler T. ADF 2005. Amsterdam: Netherlands, Vrije Universiteit, http://www.scm.com.
  77. 77.
    Slater JC. 1930. Atomic shielding constants. Phys Rev 36:57–64.CrossRefGoogle Scholar
  78. 78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. 2004. Gaussian 03, revision C.02. Wallingford CT: Gaussian Inc.Google Scholar
  79. 79.
    Boys SF. 1950. Electronic wave functions, I: a general method of calculation for the stationary states of any molecular system. Proc R Soc (London) A 200:542–554.CrossRefGoogle Scholar
  80. 80.
    Neese F. 2004. ORCA—an ab inito density functional and semi-empirical program package, version 2.4, revision 13. Mülheim an der Ruhr: Max Planck Institute for Bioinorganic Chemistry.Google Scholar
  81. 81. Malkin VG, Malkina OL, Reviakine R, Arbuznikov A, Kaupp M, Schimmelpfennig B, Malkin I, Helgaker T, Ruud K. 2003. MAG-ReSpect program package, version 1.1.Google Scholar
  82. 82.
    Neese F. 2003. Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Mossbauer properties. Curr Opin Chem Biol 7:125–135.PubMedCrossRefGoogle Scholar
  83. 83.
    Carl PJ, Isley SL, Larsen SC. 2001. Combining theory and experiment to interpret the EPR Spectra of VO2+-exchanged zeolites. J Phys Chem B 105:4563–4573.Google Scholar
  84. 84.
    Saladino AC, Larsen SC. 2002. Computational study of the effect of the imidazole ring orientation on the EPR parameters for vanadyl–imidazole complexes. J Phys Chem A 106:10444–10451.CrossRefGoogle Scholar
  85. 85.
    Neese F. 2003. Metal and ligand hyperfine couplings in transition metal complexes: the effect of spin–orbit coupling as studied by coupled perturbed Kohn-Sham theory. J Chem Phys 118:3939–3948.CrossRefGoogle Scholar
  86. 86.
    Saladino AC, Larsen SC. 2003. Density functional theory calculations of the EPR parameters for VO2+ complexes. J Phys Chem A 107:1872–1878.CrossRefGoogle Scholar
  87. 87.
    Paine TK, Weyhermuller T, Slep LD, Neese F, Bill E, Bothe E, Wieghardt K, Chaudhuri P. 2004. Nonoxovanadium(IV) and oxovanadium(V) complexes with mixed O, X, O-donor ligands (X = S, Se, P, or PO). Inorg Chem 43(23):7324–7338PubMedCrossRefGoogle Scholar
  88. 88.
    Neese F. 2001. Prediction of electron paramagnetic resonance g value using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096.CrossRefGoogle Scholar
  89. 89.
    Weil JA, Bolton JR, Wertz JE. 1994. Electron paramagnetic resonance: elementary theory and practical applications. New York: John Wiley & Sons.Google Scholar
  90. 90.
    Albanese NF, Chasteen ND. 1978. Origin of the electron paramagetic resonance line widths in frozen solutions of the oxovanadium(IV) ion. J Phys Chem 82:910–914.CrossRefGoogle Scholar
  91. 91.
    Perdew JP, Burke K, Wang Y. 1996. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539.CrossRefGoogle Scholar
  92. 92.
    Smith II TS, Root CA, Kampf JW, Rasmussen PG, Pecoraro VL. 2000. Reevaluation of the additivity relationship for vanadyl-imidazole complexes: correlation of the EPR hyperfine constant with ring orientation. J Am Chem Soc 122:767–775.CrossRefGoogle Scholar
  93. 93.
    Larsen SC, Singel DJ. 1992. Multifrequency and orientation selective ESEEM spectroscopy of ammonia adsorbed on a silica supported vanadium oxide catalyst. J Phys Chem 96:9007–9013.CrossRefGoogle Scholar
  94. 94.
    Larsen SC. 2001. DFT calculations of proton hyperfine coupling constants for [VO(H2O)5]2+: comparison with proton ENDOR data. J Phys Chem A 105:8333–8338.CrossRefGoogle Scholar
  95. 95.
    Scholes CP, Falkowski KM, Chen S, Bank J. 1986. Electron nuclear double resonance (ENDOR) of bis(imidazole) ligated low-spin ferric heme systems. J Am Chem Soc 108:1660–1671.CrossRefGoogle Scholar
  96. 96.
    Torrent M, Musaev DG, Morokuma K, Ke SC, Warncke K. 1999. Calculation of nuclear quadrupole parameters in imidazole derivatives and extrapolation to coenzyme B12: a theoretical study. J Phys Chem B 103:8618–8627.CrossRefGoogle Scholar
  97. 97.
    Lord KA, Reed GH. 1990. Vanadyl(IV) complexes with pyruvate kinase: activation of the enzyme and electron paramagnetic resonance properties of ternary complexes with the protein. Arch Biochem Biophys 281:124–131.PubMedCrossRefGoogle Scholar
  98. 98.
    Lord KA, Reed G.H. 1987. Vanadyl(IV)–thallium(I)–205,203 superhyperfine coupling in complexes with pyruvate kinase. Inorg Chem 26:1464–1466.CrossRefGoogle Scholar
  99. 99.
    Markham GD, Leyh TS. 1987. Superhyperfine couplings between metal ions at the active site of S-adenosylmethionine synthetase. J Am Chem Soc 109:599–600.CrossRefGoogle Scholar
  100. 100.
    Peterson J, Hawkes TR, Lowe DJ. 1997. The metal-binding site of imidazole glycerol phosphate dehydratase; EPR and ENDOR studies of the oxo-vanadyl enzyme. J Biol Inorg Chem 2:308–319.CrossRefGoogle Scholar
  101. 101.
    Bogumil R, Hüttermann J, Kappl R, Stabler R, Sudfeldt C, Witzel H. 1991. Visible EPR and electron nuclear double resonance spectroscopic studies on the two metal-binding sites of oxovanadium(IV)-substituted D-xylose isomerase. Eur J Biochem 196:305–312.PubMedCrossRefGoogle Scholar
  102. 102.
    He QY, Mason AB. 2002. Molecular aspects of iron release from transferrin. In Molecular and cellular iron transport, pp. 95–123. Ed DM Templeton. New York: Marcel Dekker.Google Scholar
  103. 103.
    Cannon JC, Chasteen ND. 1975. Nonequivalence of the metal binding sites in vanadyl labeled human serum transferrin. Biochemistry 14:4573–4577.PubMedCrossRefGoogle Scholar
  104. 104.
    Liu X, Theil EC. 2005. Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 38:167–175.PubMedCrossRefGoogle Scholar
  105. 105.
    Chasteen ND, Theil EC. 1982. Iron binding by horse spleen apoferritin: a vanadyl(IV) EPR spin probe study. J Biol Chem 257:7672–7677.PubMedGoogle Scholar
  106. 106.
    Wardeska JG, Viglione B, Chasteen ND. 1986. Metal ion complexes of apoferritin: evidence for initial binding in the hydrophilic channels. J Biol Chem 261:6677–6683.PubMedGoogle Scholar
  107. 107.
    Chasteen ND, Lord EM, Thompson HJ, Grady JK. 1986. Vanadium complexes of transferrin and ferritin in the rat. Biochim Biophys Acta 884:84–92.PubMedGoogle Scholar
  108. 108.
    Chasteen ND, Lord EM, Thompson HJ. 1986. Vanadium metabolism: vanadyl(IV) electron paramagnetic resonance spectroscopy of selected tissues in the rat. In Frontiers in bioinorganic chemistry, pp. 133–144. Ed A Xavier. Weinheim: VCH Publishers.Google Scholar
  109. 109.
    Hanna PM, Chasteen ND, Rottman GA, Aisen P. 1991. Iron binding to horse spleen apoferritin: a vanadyl ENDOR spin probe study. Biochemistry 30:9210–9216.PubMedCrossRefGoogle Scholar
  110. 110.
    Grady JK, Shao J, Arosio P, Santambrogio P, Chasteen ND. 2000. Vanadyl(IV) binding to mammalian ferritins: an EPR study aided by site-directed mutagenesis. J Inorg Biochem 80:107–113.PubMedCrossRefGoogle Scholar
  111. 111.
    Martin DM, Chasteen ND. 1987. Vanadium. Methods Enzymol 158:402–421.CrossRefGoogle Scholar
  112. 112.
    Fukui K, Ohya-Nishiguchi H, Nakai M, Sakurai H, Kamada H. 1995. Detection of vanady-nitrogen interaction in organs of the vanadyl-treated rat: electron spin echo envelope modulation study. FEBS Lett 368(1):31–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Fukui K, Fujisawa Y, Ohy-Nishiguchi H, Kamada H, Sakurai H. 1999. In vivo coordination structural changes of a potent insulin-mimetic agent, bis(picolinato)oxovanadium(IV), studied by electron spin-echo envelope modulation spectroscopy. J Inorg Biochem 77:215–224.PubMedCrossRefGoogle Scholar
  114. 114.
    Dikanov SA, Liboiron BD, Thompson KH, Vera E, Yuen VG, McNeill JH, Orvig C. 2003. One- and two-dimensional pulsed electron paramagnetic resonance studies of in vivo vanadyl coordination in rat kidney. Bioinorg Chem Appl 1:69–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IowaIowa CityUSA
  2. 2.Department of ChemistryUniversity of New HampshireDurhamUSA

Personalised recommendations