Advertisement

EPR of Cobalt-Substituted Zinc Enzymes

  • Brian Bennett
Chapter
Part of the Biological Magnetic Resonance book series (BIMR, volume 29)

Abstract

Co(II) is sometimes utilized as a spectroscopically active substitute for Zn(II) in enzymes. Metal binding sites in enzymes that contain catalytically active Zn(II) generally yield high-spin S = 3/2 Co(II) ions when substituted with cobalt, and these provide EPR spectra rich in information. Extracting this information involves an appreciation of the extent to which the properties of Co(II) mirror those of Zn(II), careful sample preparation and biochemical characterization, careful recording of the EPR data, and the ability to interpret spectra in a quantitative way. Here, the applicability of Co(II) as a structural and functional mimic of Zn(II) in enzymes is considered and a brief update of EPR studies in the literature is presented. Methods of substitution of Zn(II) by Co(II) are described. Recording EPR spectra of high-spin Co(II) that will provide useful information is not a trivial exercise, and experimental considerations are discussed in some detail. The analysis of EPR spectra in terms of spin-Hamiltonian parameters is described, along with their interpretation in structural terms. Complementary techniques to EPR are very briefly discussed, and a case study is presented as an example of how EPR of Co(II) can provide mechanistic information on a zinc enzyme that is unavailable by other techniques.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Electron Paramagnetic Resonance Study Magnetic Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vallee BL, Rupley JA, Coombs TL, Neurath H. 1958. The release of zinc from carboxypeptidase and its replacement. J Am Chem Soc 80:4750–4751.CrossRefGoogle Scholar
  2. 2.
    Vallee BL, Galdes A. 1984. The metallobiochemistry of zinc enzymes. Adv Enzymol 56:283–430.PubMedGoogle Scholar
  3. 3.
    Huheey JE. 1983. Inorganic chemistry. New York: Harper & Row.Google Scholar
  4. 4.
    Maret M, Vallee BL. 1993. Cobalt as probe and label of proteins. Methods Enzymol 226:52–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Crawford PA, Yang K-W, Narayan S, Bennett B, Crowder MW. 2005. Spetroscopic studies on Co(II)-substituted metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry 44:5168–5176.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang J, Stieglitz A, Kantrowitz ER. 2005. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry 44:8378–8386.CrossRefPubMedGoogle Scholar
  7. 7.
    Werth MT, Tang S-F, Formicka G, Zeppezauer M, Johnson MK. 1995. Magnetic circular dichroism and electron paramagnetic resonance studies of cobalt-substituted horse liver alcohol dehydrogenase. Inorg Chem 34:218–228.CrossRefGoogle Scholar
  8. 8.
    Bennett B, Holz RC. 1997. EPR Studies on the mono- and dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas Proteolytica: insight into the catalytic mechanism of dinuclear hydrolases. J Am Chem Soc 119:1923–1933.CrossRefGoogle Scholar
  9. 9.
    Garrity JD, Bennett B, Crowder MW. 2005. Direct evidence that the reaction intermediate of metallo-lactamase L1 is metal bound. Biochemistry 44:1078–1087.CrossRefPubMedGoogle Scholar
  10. 10.
    Kleifeld O, Rulfisek L, Bogin O, Frenkel A, Havlas Z, Burstein Y, Sagi I. 2004. Higher metal–ligand coordination in the catalytic site of cobalt-substitiuted Thermoanaerobacter brockii alcohol dehydrogenase lowers the barrier for enzyme catalysis. Biochemistry 43:7151–7161.CrossRefPubMedGoogle Scholar
  11. 11.
    Kremer-Aach A, Kläui W, Bell R, Strerath A, Wunderlich H. Mootz D. 1997. Cobalt as a probe for zinc in metalloenzyme model compounds? A comparison of spectroscopic features and coordination geometry of four- and five-coordinate complexes. Inorg Chem 36:1552–1563.CrossRefPubMedGoogle Scholar
  12. 12.
    Bennett B. 2002. EPR of Co(II) as a structural and mechanistic probe of metalloprotein active sites: characterisation of an aminopeptidase. Curr Topics Biophys 26:49–57.Google Scholar
  13. 13.
    Kobayashi M, Shimizu S. 1999. Cobalt proteins. Eur J Biochem 261:1–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Grell E, Bray RC. 1971. Electron paramagnetic resonance spectroscopy of bovine cobalt carbonic anhydrase B. Biochim Biophys Acta 236:503–506.PubMedGoogle Scholar
  15. 15.
    Martinelli RA, Hanson GR, Thompson JS, Holmquist B, Pilbrow JR, Auld DS, Vallee BL. 1989. Characterization of the inhibitor complexes of cobalt carboxypeptidase a by electron paramagnetic resonance spectroscopy. Biochemistry 28:2251–2258.CrossRefPubMedGoogle Scholar
  16. 16.
    Fung C-H, Mildvan AS, Leigh JS. 1974. Electron and nuclear magnetic resonance studies of the interaction of pyruvate with transcarboxylase. Biochemistry 13:1160–1169.CrossRefPubMedGoogle Scholar
  17. 17.
    Bicknell R, Hanson GR, Holmquist B, Little C. 1986. A spectral study of Cobalt(II)- substituted Bacillus cereus phospholipase C. Biochemistry 25:4219–4223.CrossRefPubMedGoogle Scholar
  18. 18.
    Bubacco L, Magliozzo RS, Beltramini M, Salvato S, Peisach J. 1992. Preperation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin. Biochemistry 31:9294–9303.CrossRefPubMedGoogle Scholar
  19. 19.
    Horecker BL, Tsolas O, Lai CY. 1972. Aldolases. In The enzymes, Vol. 7, 3rd ed, pp. 213–258. Ed PD Boyer. New York: Academic Press.CrossRefGoogle Scholar
  20. 20.
    Xu D, Xie D, Guo H. 2006. Catalytic mechanism of class B2 metallo-β-lactamase. J Biol Chem 281:9740–8747.Google Scholar
  21. 21.
    Davis MI, Bennett MJ, Thomas LM, Bjorkman PJ. 2005. crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci USA 102:5981–5986.CrossRefPubMedGoogle Scholar
  22. 22.
    Kaznowski A, Wlodarczak K. 1991. Enzymatic characterization of Vibrionaceae strains isolated from environment and cold-blooded animals. Acta Microbiol Pol 40:71–76.PubMedGoogle Scholar
  23. 23.
    Maras B, Greenblatt HM, Shoham G, Spungin-Bialik A, Blumberg S, Barra D. 1997. Aminopeptidase from Streptomyces griseus: primary structure and comparison with other zinc-containing aminopeptidases. Eur J Biochem 236:843–846.CrossRefGoogle Scholar
  24. 24.
    Merkel JR, Traganza ED, Mukherjee BB, Griffin TB, Prescott JM. 1964. Proteolytic activity and general characteristics of a marine bacterium, Aeromonas proteolytica Sp. N. J Bacteriol 87:1227–1233.PubMedGoogle Scholar
  25. 25.
    Scoglio ME, DiPietro A, Picerno I, Delia S, Mauro A, Lagana P. 2001. Virulence factors in vibrios and aeromonads isolated from seafood. New Microbiol 24:273–280.PubMedGoogle Scholar
  26. 26.
    Stevens DL, Bryant AE. 2002. The role of clostridial toxins in the pathogenesis of gas gangrene. Clin Infect Dis 35:S93–S100.CrossRefPubMedGoogle Scholar
  27. 27.
    Toma C, Honma Y. 1996. Cloning and genetic analysis of the Vibrio cholerae aminopeptidase gene. Infect Immun 64:4495–4500.PubMedGoogle Scholar
  28. 28.
    Bennett B, Holz RC. 1997. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding. Biochemistry 36:9837–9846.CrossRefPubMedGoogle Scholar
  29. 29.
    Bennett B, Holz RC. 1998. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid, a transition state analogue of peptide hydrolysis. J Am Chem Soc 120:12139–12140.CrossRefGoogle Scholar
  30. 30.
    De Paola CC, Bennett B, Holz RC, Ringe D, Petsko GA. 1999. 1-butaneboronic acid binding to Aeromonas proteolytica aminopeptidase: a case of arrested development. Biochemistry 38:9048.CrossRefPubMedGoogle Scholar
  31. 31.
    Stamper C, Bennett B, Edwards T, Holz RC, Ringe D, Petsko G. 2001. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinephosphonic acid: spectroscopic and crystallographic characterization of the transition state of peptide hydrolysis. Biochemistry 40:7035–7036.CrossRefPubMedGoogle Scholar
  32. 32.
    Bennett B, Antholine WE, D'souza VM, Chen G, Ustinyuk L, Holz RC. 2002. Structurally distinct active sites in the copper(II)-substituted aminopeptidase from Aeromonas proteolytica. J Am Chem Soc 124:13025–13034.CrossRefPubMedGoogle Scholar
  33. 33.
    Bienvenue D, Bennett B, Holz RC. 2000. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor-enzyme complex. J Inorg Biochem 78:43–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Huntington KM, Bienvenue D, Wei Y, Bennett B, Holz RC, Pei D. 1999. Slow-binding inhibition of the aminopeptidase from Aeromonas proteolytica by peptide thiols: synthesis and spectral characterization. Biochemistry 38:15587–15596.CrossRefPubMedGoogle Scholar
  35. 35.
    Stamper CC, Bienvenue DL, Bennett B, Ringe D, Petsko G, Holz RC. 2004. Spectroscopic and x-ray crystallographic characterization of bestatin bound to the aminopeptidase from Aeromonas (Vibrio) proteolytica. Biochemistry 43:9620–9628.Google Scholar
  36. 36.
    Bzymek K, Moulin A, Swierczek SI, Ringe D, Petsko G, Bennett B, Holz RC. 2005. Kinetic, spectroscopic, and x-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica. Biochemistry 44:12030–12040.CrossRefGoogle Scholar
  37. 37.
    Bzymek KP, Swierczek SI, Bennett B, Holz RC. 2005. Spectroscopic and thermodynamic characterization of the E151D and E151A altered leucine aminopeptidases from Aeromonas proteolytica Inorg Chem 44:8574–8580.CrossRefPubMedGoogle Scholar
  38. 38.
    Breece RM, Costello A, Bennett B, Sigdel TK, Matthews ML, Tierney DL, Crowder MW. 2005. A five-coordinate metal center in Co(II)-substituted VanX. J Biol Chem 280:11074–11081.CrossRefPubMedGoogle Scholar
  39. 39.
    Periyannan GR, Costello AL, Tierney DL, Yang KW, Bennett B, Crowder MW. 2006. Sequential binding of cobalt(II) to metallo-β-lactamase CcrA. Biochemistry 45:1313–1320.CrossRefPubMedGoogle Scholar
  40. 40.
    Jordan PA, Bohle DS, Ramilo CA, Evans JNS. 2001. New insights into the metal center of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase. Biochemistry 40:8387–8396.CrossRefPubMedGoogle Scholar
  41. 41.
    Strand KR, Karlsen S, Andersson KK. 2002. Cobalt substitution of mouse R2 ribonucleotide reductase as a model for the reactive diferrous state. J Biol Chem 37:34229–34238.CrossRefGoogle Scholar
  42. 42.
    Shapir N, Osborne JP, Johnson G, Sadowsky MJ, Wackett LP. 2002. Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. J Bacteriol 184:5376–5384.CrossRefPubMedGoogle Scholar
  43. 43.
    Doi Y, Lee BR, Ikeguchi M, Ohoba Y, Ikoma T, Tero-Kubota S, Yamauchi S, Takahashi K, Ichishima E. 2003. Substrate specificities of deuterolysin from aspergillus oryzae and electron paramagnetic resonance measurement of cobalt-substituted deuterolysin. Biosci Biotechnol Biochem 67:264–270.CrossRefPubMedGoogle Scholar
  44. 44.
    Bienvenue DL, Gilner DM, Davis RS, Bennett B, Holz RC. 2003. Substrate specificity, metal binding properties and spectroscopic characterization of the DapE-encoded N-succinyl-L, L-diaminopimelic acid desuccinylase from Haemophilus influenzae. Biochemistry 42:10756–10763.CrossRefPubMedGoogle Scholar
  45. 45.
    Davis RM, Bienvenue DL, Swierczek SI, Gilner D, Rajagopal L, Bennett B, Holz RC. 2006. Kinetic and spectroscopic characterization of the E134A- and E134D-altered DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae. J Biol Inorg Chem 11:206–216.CrossRefPubMedGoogle Scholar
  46. 46.
    McGregor WC, Swierczek SI, Bennett B, Holz RC. 2005. ArgE-encoded N-acetyl-L-ornithine deacetylase from Escherichia coli contains a dinuclear metalloactive site. J Am Chem Soc 127:14100–14107.CrossRefPubMedGoogle Scholar
  47. 47.
    Copik AJ, Waterson S, Swierczek SI, Bennett B, Holz RC. 2005. Both nucleophile and substrate bind to the catalytic Fe(II) center in the type-II methionyl aminopeptidase from Pyrococcus furiosus. Inorg Chem 44:1160–1162.CrossRefPubMedGoogle Scholar
  48. 48.
    D'souza VM, Bennett B, Holz RC. 2000. Characterization of the divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochemistry 39:3817–3826.CrossRefPubMedGoogle Scholar
  49. 49.
    Copik AJ, Nocek BP, Swierczek SI, Ruebush S, Jang SB, Meng L, D'souza VM, Peters JW, Bennett B, Holz RC. 2005. EPR and x-ray crystallographic characterization of the product-bound form of the MnII-loaded methionyl aminopeptidase from Pyrococcus furiosus. Biochemistry 44:121–129.CrossRefPubMedGoogle Scholar
  50. 50.
    D'souza VM, Brown RS, Bennett B, Holz RC. 2005. Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli. J Biol Inorg Chem 10:41–50.CrossRefPubMedGoogle Scholar
  51. 51.
    Lowther WT, Matthews BW. 2000. Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477:157–167.PubMedGoogle Scholar
  52. 52.
    Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MWW. 1998. Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789.PubMedGoogle Scholar
  53. 53.
    Petrovich RM, Ruzicka FJ, Reed GH, Frey PA. 1991. Metal cofactors of lysine-2,3-aminomutase. J Biol Chem 12:7656–7660.Google Scholar
  54. 54.
    Gavel OY, Bursakov SA, Calvete JJ, George GN, Moura JJG, Moura I. 1998. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio: a novel metalloprotein containing cobalt and zinc. Biochemistry 37:16225–16232.CrossRefPubMedGoogle Scholar
  55. 55.
    Maret W, Vallee BL. 1993. Cobalt as probe and label of proteins. Methods Enzymol 226:52–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Prescott JM, Wagner FW, Holmquist B, Vallee BL. 1985. Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metalbinding sites. Biochemistry 24:5350–5356.CrossRefPubMedGoogle Scholar
  57. 57.
    Bennett B, Benson N, McEwan AG, Bray RC. 1994. Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur J Biochem 225:321–331.CrossRefPubMedGoogle Scholar
  58. 58.
    Siemann S, Badiei HR, Karanassios V, Viswanatha T, Dmitienko GI. 2006. 68Zn isotope exchange experiments reveal an unusual kinetic lability of the metal ions in the dizinc form of IMP-1 metallo-β-lactamase. Chem Commun 2006:532–534.CrossRefGoogle Scholar
  59. 59.
    Walsby CJ, Krepkiy D, Petering DH, Hoffman BH. 2003. Cobalt-substituted zinc finger 3 of transcription factor IIIA: interactions with cognate DNA detected by 31P ENDOR spectroscopy. J Am Chem Soc 125:7502–7503.CrossRefPubMedGoogle Scholar
  60. 60.
    Mchaourab HS, Pfenninger S, Antholine WA, Felix CC, Hyde JS, Kroneck PMH. 1993. Multiquantum EPR of the mixed valence copper site in nitrous oxide reductase. Biophys J 64:1576–1579.CrossRefPubMedGoogle Scholar
  61. 61.
    Hagen WR. 1982. EPR spectroscopy of iron sulfur proteins. Adv Inorg Chem 38:165–222.CrossRefGoogle Scholar
  62. 62.
    Hendrich MP, Debrunner PG. 1989. Integer-spin electron paramagnetic resonance of iron proteins. Biophys J 56:489–506.CrossRefPubMedGoogle Scholar
  63. 63.
    Froncisz W, Hyde JS. 1982. The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J Magn Reson 47:515–521.Google Scholar
  64. 64.
    Belford RL. 1979. Computer simulation of powder spectra, EPR Symposium, 21st Rocky Mountain Conference, Denver, Colorado.Google Scholar
  65. 65.
    Maurice AM. 1980. PhD dissertation. University of Illinois, Urbana.Google Scholar
  66. 66.
    Nilges MJ. 1979. PhD dissertation. University of Illinois, Urbana.Google Scholar
  67. 67.
    Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S. 2004. XSophe- Sophe-XeprView®: a computer simulation software suite (v. 1.1.3) for the Analysis of continuous wave EPR spectra. J Inorg Biochem 98:903–916.CrossRefPubMedGoogle Scholar
  68. 68.
    Pilbrow JR. 1978. Effective g values for S = 3/2 and S = 5/2. J Magn Reson 31:479–489.Google Scholar
  69. 69.
    Krzystek J, Zvyagin SA, Ozarowski A, Fiedler AT, Brunold TC, Telser J. 2004. Definitive spectroscopic determination of zero-field splitting in high-spin cobalt. J Am Chem Soc 126:2148–2155.CrossRefPubMedGoogle Scholar
  70. 70.
    Hagen WR, Hearshen DO, Sands RH, Dunham WR. 1985. A statistical theory for powder EPR in distributed systems. J Magn Reson 61:220–232.Google Scholar
  71. 71.
    Jenkins DM, Di Billio AJ, Allen MJ, Betley TA, Peters JC. 2002. Elucidation of a low spin cobalt(II) system in a distorted tetrahedral geometry. J Am Chem Soc 124:15336–15350.CrossRefPubMedGoogle Scholar
  72. 72.
    Jenkins DM, Peters JC. 2005. Spin-state tuning at pseudotetrahedral d7 ions: examining the structural and magnetic phenomena of four-coordinate [BP3]CoII-X systems. J Am Chem Soc 127:7148–7165.CrossRefPubMedGoogle Scholar
  73. 73.
    Lohr LL, Miller JC, Sharp RR. 1999. Electronic structure and magnetic properties of high-spin octahedral Co(II) complexes: Co(II)(Acac)2(H2O)2. J Chem Phys 111:10148–10158.CrossRefGoogle Scholar
  74. 74.
    Ozarowski A, Lee HM, Balch AL. 2003. Crystal environments probed by EPR spectroscopy. J Am Chem Soc 125:12606–12614.CrossRefPubMedGoogle Scholar
  75. 75.
    Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL. 1997. Magnetic circular dichroism spectroscopy as a probe of geometric and electronic structure of cobalt(II)-substituted proteins: ground-state zero-field splitting as a coordination number indicator. J Am Chem Soc 119:4182–4196.CrossRefGoogle Scholar
  76. 76.
    Makinen MW, Maret W, Yim MB. 1983. Neutral metal-bound water is the base catalyst in liver alcohol dehydrogenase. Proc Natl Acad Sci USA 80:2584–2588.CrossRefPubMedGoogle Scholar
  77. 77.
    Makinen MW, Yim MB. 1981. Coordination environment of the active-site metal ion of liver alcohol dehydrogenase. Proc Natl Acad Sci USA 78:6221–6225.CrossRefPubMedGoogle Scholar
  78. 78.
    Munih P, Moulin A, Stamper CC, Bennett B, Ringe D, Petsko GA, Holz RC. 2007. X-ray crystallographic characterization of the Co(II)-substituted Tris-bound form of the aminopeptidase from Aeromonas proteolytica. J Inorg Biochem 101(8):1099–1107.CrossRefPubMedGoogle Scholar
  79. 79.
    Kumar A, Periyannan GR, Narayanan B, Kittell AW, Kim JJ, Bennett B. 2007. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Biochem J 403(3):527–536.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations