HSV as a Vector in Vaccine Development and Gene Therapy

  • Peggy Marconi
  • Rafaela Argnani
  • Alberto L. Epstein
  • Roberto Manservigi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 655)


The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.


Herpes Simplex Virus Bacterial Artificial Chromosome Herpes Simplex Virus Type Oncolytic Virus Transporter Associate With Antigen Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roizman B, Baines J. The diversity and unity of Herpesviridae. Comp Immunol Microbiol Infect Dis 1991; 14(2):63–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998; 26(3):541–553; quiz 554–545.PubMedCrossRefGoogle Scholar
  3. 3.
    Roizman B, Knipe DM. Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Vol 2, 2nd ed. Philadelphia: Lippincot, Williams and Wilkins 2001; 2399–2460.Google Scholar
  4. 4.
    Roizman B. HSV gene functions: what have we learned that could be generally applicable to its near and distant cousins? Acta Virol 1999; 43(2–3):75–80.PubMedGoogle Scholar
  5. 5.
    Subak-Sharpe JH, Dargan DJ. HSV molecular biology: general aspects of herpes simplex virus molecular biology. Virus Genes 1998; 16(3):239–251.PubMedCrossRefGoogle Scholar
  6. 6.
    Marozin S, Prank U, Sodeik B. Herpes simplex virus type 1 infection of polarized epithelial cells requires microtubules and access to receptors present at cell-cell contact sites. J Gen Virol 2004; 85(Pt 4):775–786.PubMedCrossRefGoogle Scholar
  7. 7.
    Babb R, Huang CC, Aufiero DJ et al. DNA recognition by the herpes simplex virus transactivator VP16: a novel DNA-binding structure. Mol Cell Biol 2001; 21(14):4700–4712.PubMedCrossRefGoogle Scholar
  8. 8.
    Jackson SA, DeLuca NA. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci USA 2003; 100(13):7871–7876.PubMedCrossRefGoogle Scholar
  9. 9.
    Steiner I, Kennedy PG. Molecular biology of herpes simplex virus type 1 latency in the nervous system. Mol Neurobiol 1993; 7(2):137–159.PubMedCrossRefGoogle Scholar
  10. 10.
    Aurelian L. HSV-induced apoptosis in herpes encephalitis. Curr Top Microbiol Immunol 2005; 289:79–111.PubMedCrossRefGoogle Scholar
  11. 11.
    Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001; 357(9267):1513–1518.PubMedCrossRefGoogle Scholar
  12. 12.
    Daheshia M, Feldman LT, Rouse BT. Herpes simplex virus latency and the immune response. Curr Opin Microbiol 1998; 1(4):430–435.PubMedCrossRefGoogle Scholar
  13. 13.
    Roizman B, Whitley RJ. The nine ages of herpes simplex virus. Herpes 2001; 8(1):23–27.PubMedGoogle Scholar
  14. 14.
    Rouse BT. Pathogenesis of the herpesviruses. Lab Anim Sci 1993; 43(1):11–14.PubMedGoogle Scholar
  15. 15.
    Glorioso JC, DeLuca NA, Fink DJ. Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol 1995; 49:675–710.PubMedCrossRefGoogle Scholar
  16. 16.
    Advani SJ, Weichselbaum RR, Whitley RJ et al. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications. Clin Microbiol Infect 2002; 8(9):551–563.PubMedCrossRefGoogle Scholar
  17. 17.
    Goins WF, Wolfe D, Krisky DM et al. Delivery using herpes simplex virus: an overview. Methods Mol Biol 2004; 246:257–299.PubMedGoogle Scholar
  18. 18.
    Epstein AL. HSV-1-derived recombinant and amplicon vectors for preventive or therapeutic gene transfer: an overview. Gene Ther 2005; 12 Suppl 1:S153.CrossRefGoogle Scholar
  19. 19.
    Lachmann R. Herpes simplex virus-based vectors. Int J Exp Pathol 2004; 85(4):177–190.PubMedCrossRefGoogle Scholar
  20. 20.
    Maguire-Zeiss KA, Bowers WJ, Federoff HJ. HSV vector-mediated gene delivery to the central nervous system. Curr Opin Mol Ther 2001; 3(5):482–490.PubMedGoogle Scholar
  21. 21.
    Glorioso JC, Fink DJ. Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol 2004; 58:253–271.PubMedCrossRefGoogle Scholar
  22. 22.
    Markert JM, Gillespie GY, Weichselbaum RR et al. Genetically engineered HSV in the treatment of glioma: a review. Rev Med Virol 2000; 10(1):17–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Niranjan A, Wolfe D, Fellows W et al. Gene transfer to glial tumors using herpes simplex virus. Methods Mol Biol 2004; 246:323–337.PubMedGoogle Scholar
  24. 24.
    Karpoff HM, Kooby D, D’Angelica M et al. Efficient cotransduction of tumors by multiple herpes simplex vectors: implications for tumor vaccine production. Cancer Gene Ther 2000; 7(4):581–588.PubMedCrossRefGoogle Scholar
  25. 25.
    Toda M, Martuza RL, Kojima H et al. In situ cancer vaccination: an IL-12 defective vector/replication-competent herpes simplex virus combination induces local and systemic anti-tumor activity. J Immunol 1998; 160(9):4457–4464.PubMedGoogle Scholar
  26. 26.
    Roizman B. Introduction: objectives of herpes simplex virus vaccines seen from a historical perspective. Rev Infect Dis 1991; 13 Suppl 11:S892–894.Google Scholar
  27. 27.
    Kaur A, Sanford HB, Garry D et al. Ability of herpes simplex virus vectors to boost immune responses to DNA vectors and to protect against challenge by simian immunodeficiency virus. Virology 2007; 357(2):199–214.PubMedCrossRefGoogle Scholar
  28. 28.
    Ho DY, Fink SL, Lawrence MS et al. Herpes simplex virus vector system: analysis of its in vivo and in vitro cytopathic effects. J Neurosci Methods 1995; 57(2):205–215.PubMedCrossRefGoogle Scholar
  29. 29.
    Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci USA 1996; 93(21):11307–11312.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson PA, Miyanohara A, Levine F et al. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol 1992; 66(5):2952–2965.PubMedGoogle Scholar
  31. 31.
    Epstein AL, Marconi P, Argnani R et al. HSV-1-derived recombinant and amplicon vectors for gene transfer and gene therapy. Curr Gene Ther 2005; 5(5):445–458.PubMedCrossRefGoogle Scholar
  32. 32.
    Frenkel N, Singer O, Kwong AD. Minireview: the herpes simplex virus amplicon—a versatile defective virus vector. Gene Ther 1994; 1 Suppl 1:S40–46.Google Scholar
  33. 33.
    Sena-Esteves M, Saeki Y, Fraefel C et al. HSV-1 amplicon vectors—simplicity and versatility. Mol Ther 2000; 2(1):9–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein AL. HSV-1-based amplicon vectors: design and applications. Gene Ther 2005; 12 Suppl 1: S154–158.CrossRefGoogle Scholar
  35. 35.
    Wang S, Fraefel C, Breakefield X. HSV-1 amplicon vectors. Methods Enzymol 2002; 346:593–603.PubMedCrossRefGoogle Scholar
  36. 36.
    Halterman MW, Giuliano RE, Bowers WJ et al. Improved HSV-1 amplicon packaging using virion host shutoff mutants lacking mRNAse activity. J Gene Med 2006; 8(11):1320–1328.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang L, Daikoku T, Ohtake K et al. Establishment of a novel foreign gene delivery system combining an HSV amplicon with an attenuated replication-competent virus, HSV-1 HF10. J Virol Methods 2006; 137(2):177–183.PubMedCrossRefGoogle Scholar
  38. 38.
    Sia KC, Wang GY, Ho IA et al. Optimal purification method for Herpes-based viral vectors that confers minimal cytotoxicity for systemic route of vector administration. J Virol Methods 2007; 139(2):166–174.PubMedCrossRefGoogle Scholar
  39. 39.
    Saeki Y, Ichikawa T, Saeki A et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 1998; 9(18):2787–2794.PubMedCrossRefGoogle Scholar
  40. 40.
    Saeki Y, Breakefield XO, Chiocca EA. Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. Methods Mol Med 2003; 76:51–60.PubMedGoogle Scholar
  41. 41.
    Logvinoff C, Epstein AL. A novel approach for herpes simplex virus type 1 amplicon vector production, using the Cre-loxP recombination system to remove helper virus. Hum Gene Ther 2001; 12(2):161–167.PubMedCrossRefGoogle Scholar
  42. 42.
    Marconi P, Krisky D, Oligino T et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc Natl Acad Sci USA 1996; 93(21):11319–11320.PubMedCrossRefGoogle Scholar
  43. 43.
    Krisky DM, Marconi PC, Oligino TJ et al. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther 1998; 5(11):1517–1530.PubMedCrossRefGoogle Scholar
  44. 44.
    Wu N, Watkins SC, Schaffer PA et al. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27 and ICP22. J Virol 1996; 70(9):6358–6369.PubMedGoogle Scholar
  45. 45.
    DeLuca NA, Schaffer PA. Activation of immediate-early, early and late promoters by temperature-sensitive and wild-type forms of herpes simplex virus type 1 protein ICP4. Mol Cell Biol 1985; 5(8):1997–1208.PubMedGoogle Scholar
  46. 46.
    DeLuca NA, Schaffer PA. Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. J Virol 1988; 62(3):732–743.PubMedGoogle Scholar
  47. 47.
    Sze P, Herman RC. The herpes simplex virus type 1 ICP6 gene is regulated by a ‘leaky’ early promoter. Virus Res 1992; 26(2):141–152.PubMedCrossRefGoogle Scholar
  48. 48.
    Everett RD. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 2000; 22(8):761–770.PubMedCrossRefGoogle Scholar
  49. 49.
    Prod’hon C, Machuca I, Berthomme H et al. Characterization of regulatory functions of the HSV-1 immediate-early protein ICP22. Virology 1996; 226(2):393–402.CrossRefGoogle Scholar
  50. 50.
    Long MC, Leong V, Schaffer PA et al. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J Virol 1999; 73(7):5593–5604.PubMedGoogle Scholar
  51. 51.
    Kato A, Yamamoto M, Ohno T et al. Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 2005; 79(14):9325–9331.PubMedCrossRefGoogle Scholar
  52. 52.
    Purves FC, Ogle WO, Roizman B. Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci USA 1993; 90(14):6701–6705.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogle WO, Ng TI, Carter KL et al. The UL13 protein kinase and the infected cell type are determinants of postranslational modification of ICP0. Virology 1997; 235(2):406–413.PubMedCrossRefGoogle Scholar
  54. 54.
    Hill A, Jugovic P, York I et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995; 375(6530):411–415.PubMedCrossRefGoogle Scholar
  55. 55.
    Tomazin R, Hill AB, Jugovic P et al. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 1996; 15(13):3256–3266.PubMedGoogle Scholar
  56. 56.
    Galocha B, Hill A, Barnett BC et al. The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med 1997; 185(9):1565–1572.PubMedCrossRefGoogle Scholar
  57. 57.
    Samaniego LA, Neiderhiser L, DeLuca NA. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998; 72(4):3307–3320.PubMedGoogle Scholar
  58. 58.
    Samaniego LA, Wu N, DeLuca NA. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997; 71(6):4614–4625.PubMedGoogle Scholar
  59. 59.
    Krisky DM, Marconi PC, Oligino T et al. Rapid method for construction of recombinant HSV gene transfer vectors. Gene Ther 1997; 4(10):1120–1125.PubMedCrossRefGoogle Scholar
  60. 60.
    Wood MJ, Byrnes AP, Kaplitt MG et al. Specific patterns of defective HSV-1 gene transfer in the adult central nervous system: implications for gene targeting. Exp Neurol 1994; 130(1):127–140.PubMedCrossRefGoogle Scholar
  61. 61.
    Kaplitt MG, Makimura H. Defective viral vectors as agents for gene transfer in the nervous system. J Neurosci Methods 1997; 71(1):125–132.PubMedCrossRefGoogle Scholar
  62. 62.
    Kaplitt MG, Pfaff DW. Viral Vectors for Gene Delivery and Expression in the CNS. Methods 1996; 10(3):343–350.PubMedCrossRefGoogle Scholar
  63. 63.
    Krisky DM, Wolfe D, Goins WF et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 1998; 5(12):1593–1603.PubMedCrossRefGoogle Scholar
  64. 64.
    Todo T. Oncolytic virus therapy using genetically engineered herpes simplex viruses. Hum Cell 2002; 15(3):151–159.PubMedCrossRefGoogle Scholar
  65. 65.
    Hu JC, Coffin RS. Oncolytic herpes simplex virus for tumor therapy. Int Rev Neurobiol 2003; 55:165–184.PubMedCrossRefGoogle Scholar
  66. 66.
    Post DE, Fulci G, Chiocca EA et al. Replicative oncolytic herpes simplex viruses in combination cancer therapies. Curr Gene Ther 2004; 4(1):41–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Samady L, Costigliola E, MacCormac L et al. Deletion of the virion host shutoff protein (vhs) from herpes simplex virus (HSV) relieves the viral block to dendritic cell activation: potential of vhs-HSV vectors for dendritic cell-mediated immunotherapy. J Virol 2003; 77(6):3768–3776.PubMedCrossRefGoogle Scholar
  68. 68.
    Roizman B, Markovitz N. Herpes simplex virus virulence: the functions of the gamma (1)34.5 gene. J Neurovirol 1997; 3(Suppl 1):S1–2.Google Scholar
  69. 69.
    Daikoku T, Yamamoto N, Maeno K et al. Role of viral ribonucleotide reductase in the increase of dTTP pool size in herpes simplex virus-infected Vero cells. J Gen Virol 1991; 72(Pt 6):1441–1444.PubMedCrossRefGoogle Scholar
  70. 70.
    Becker Y, Tavor E, Asher Y et al. Effect of herpes simplex virus type-1 UL41 gene on the stability of mRNA from the cellular genes: beta-actin, fibronectin, glucose transporter-1 and docking protein and on virus intraperitoneal pathogenicity to newborn mice. Virus Genes 1993; 7(2):133–143.PubMedCrossRefGoogle Scholar
  71. 71.
    Strelow LI, Leib DA. Role of the virion host shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis. J Virol 1995; 69(11):6779–6786.PubMedGoogle Scholar
  72. 72.
    Barzilai A, Zivony-Elbom I, Sarid R et al. The herpes simplex virus type 1 vhs-UL41 gene secures viral replication by temporarily evading apoptotic cellular response to infection: Vhs-UL41 activity might require interactions with elements of cellular mRNA degradation machinery. J Virol 2006; 80(1):505–513.PubMedCrossRefGoogle Scholar
  73. 73.
    Broberg EK, Hukkanen V. Immune response to herpes simplex virus and gamma134.5 deleted HSV vectors. Curr Gene Ther 2005; 5(5):523–530.PubMedCrossRefGoogle Scholar
  74. 74.
    Talloczy Z, Virgin HWt, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2006; 2(1):24–29.PubMedGoogle Scholar
  75. 75.
    Cheng G, Feng Z, He B. Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 2005; 79(3):1379–1388.PubMedCrossRefGoogle Scholar
  76. 76.
    Shah AC, Benos D, Gillespie GY et al. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 2003; 65(3):203–226.PubMedCrossRefGoogle Scholar
  77. 77.
    Mullen JT, Tanabe KK. Viral oncolysis. Oncologist 2002; 7(2):106–119.PubMedCrossRefGoogle Scholar
  78. 78.
    Chiocca EA. Oncolytic viruses. Nat Rev Cancer 2002; 2(12):938–950.PubMedCrossRefGoogle Scholar
  79. 79.
    Stricklett PK, Nelson RD, Kohan DE. Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase. Gene 1998; 215(2):415–423.PubMedCrossRefGoogle Scholar
  80. 80.
    Kong Y, Yang T, Geller AI. An efficient in vivo recombination cloning procedure for modifying and combining HSV-1 cosmids. J Virol Methods 1999; 80(2):129–136.PubMedCrossRefGoogle Scholar
  81. 81.
    Stavropoulos TA, Strathdee CA. An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 1998; 72(9):7137–7143.PubMedGoogle Scholar
  82. 82.
    Zhang X, O’Shea H, Entwisle C et al. An efficient selection system for packaging herpes simplex virus amplicons. J Gen Virol 1998; 79 (Pt 1): 125–131.PubMedGoogle Scholar
  83. 83.
    Horie K, Nishiguchi S, Maeda S et al. Structures of replacement vectors for efficient gene targeting. J Biochem (Tokyo) 1994; 115(3):477–485.Google Scholar
  84. 84.
    Gierasch WW, Zimmerman DL, Ward SL et al. Construction and characterization of bacterial artificial chromosomes containing HSV-1 strains 17 and KOS. J Virol Methods 2006; 135(2):197–206.PubMedCrossRefGoogle Scholar
  85. 85.
    Schmeisser F, Weir JP. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes. BMC Biotechnol 2007; 7:22.PubMedCrossRefGoogle Scholar
  86. 86.
    Tanaka M, Kagawa H, Yamanashi Y et al. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 2003; 77(2):1382–1391.PubMedCrossRefGoogle Scholar
  87. 87.
    Terada K, Wakimoto H, Tyminski E et al. Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Ther 2006; 13(8):705–714.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuroda T, Martuza RL, Todo T et al. Flip-Flop HSV-BAC: bacterial artificial chromosome based system for rapid generation of recombinant herpes simplex virus vectors using two independent site-specific recombinases. BMC Biotechnol 2006; 6:40.PubMedCrossRefGoogle Scholar
  89. 89.
    Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 2003; 16(1):96–113.PubMedCrossRefGoogle Scholar
  90. 90.
    Stanberry LR. Clinical trials of prophylactic and therapeutic herpes implex virus vaccines. Herpes 2004; 11 Suppl 3:161A–169A.PubMedGoogle Scholar
  91. 91.
    Lauterbach H, Kerksiek KM, Busch DH et al. Protection from bacterial infection by a single vaccination with replication-deficient mutant herpes simplex virus type 1. J Virol 2004; 78(8):4020–4028.PubMedCrossRefGoogle Scholar
  92. 92.
    Watanabe D, Brockman MA, Ndung’u T et al. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector. Virology 2007; 357(2):186–198.PubMedCrossRefGoogle Scholar
  93. 93.
    Santos K, Duke CM, Dewhurst S. Amplicons as vaccine vectors. Curr Gene Ther 2006; 6(3):383–392.PubMedCrossRefGoogle Scholar
  94. 94.
    Suter M, Lew AM, Grob P et al. BAC-VAC, a novel generation of (DNA) vaccines: A bacterial artificial chromosome (BAC) containing a replication-competent, packaging-defective virus genome induces protective immunity against herpes simplex virus 1. Proc Natl Acad Sci USA 1999; 96(22):12697–12702.PubMedCrossRefGoogle Scholar
  95. 95.
    Krause PR, Straus SE. Herpesvirus vaccines. Development, controversies and applications. Infect Dis Clin North Am 1999; 13(1):61–81, vi.PubMedCrossRefGoogle Scholar
  96. 96.
    Hocknell PK, Wiley RD, Wang X et al. Expression of human immunodeficiency virus type 1 gp120 from herpes simplex virus type 1-derived amplicons results in potent, specific and durable cellular and humoral immune responses. J Virol 2002; 76(11):5565–5580.PubMedCrossRefGoogle Scholar
  97. 97.
    Brehm M, Samaniego LA, Bonneau RH et al. Immunogenicity of herpes simplex virus type 1 mutants containing deletions in one or more alpha-genes: ICP4, ICP27, ICP22 and ICP0. Virology 1999; 256(2):258–269.PubMedCrossRefGoogle Scholar
  98. 98.
    Brockman MA, Knipe DM. Herpes simplex virus vectors elicit durable immune responses in the presence of preexisting host immunity. J Virol 2002; 76(8):3678–3687.PubMedCrossRefGoogle Scholar
  99. 99.
    Lauterbach H, Ried C, Epstein AL et al. Reduced immune responses after vaccination with a recombinant herpes simplex virus type 1 vector in the presence of anti-viral immunity. J Gen Virol 2005; 86(Pt 9):2401–2410.PubMedCrossRefGoogle Scholar
  100. 100.
    Sena-Esteves M, Hampl JA, Camp SM et al. Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors. J Gene Med 2002; 4(3):229–239.PubMedCrossRefGoogle Scholar
  101. 101.
    Savard N, Cosset FL, Epstein AL. Defective herpes simplex virus type 1 vectors harboring gag, pol and env genes can be used to rescue defective retrovirus vectors. J Virol 1997; 71(5):4111–4117.PubMedGoogle Scholar
  102. 102.
    Hong Z, Ferrari E, Wright-Minogue J et al. Enzymatic characterization of hepatitis C virus NS3/4A complexes expressed in mammalian cells by using the herpes simplex virus amplicon system. J Virol 1996; 70(7):4261–4268.PubMedGoogle Scholar
  103. 103.
    Tsitoura E, Lucas M, Revol-Guyot V et al. Expression of hepatitis C virus envelope glycoproteins by herpes simplex virus type 1-based amplicon vectors. J Gen Virol 2002; 83(Pt 3):561–566.PubMedGoogle Scholar
  104. 104.
    Tsitoura E, Georgopoulou U, Mavromara P. HSV-1 based amplicon vectors as an alternative system for the expression of functional HCV proteins. Curr Gene Ther 2006; 6(3):393–398.PubMedCrossRefGoogle Scholar
  105. 105.
    Zager JS, Delman KA, Malhotra S et al. Combination vascular delivery of herpes simplex oncolytic viruses and amplicon mediated cytokine gene transfer is effective therapy for experimental liver cancer. Mol Med 2001; 7(8):561–568.PubMedGoogle Scholar
  106. 106.
    D’Angelica M, Karpoff H, Halterman M et al. In vivo interleukin-2 gene therapy of established tumors with herpes simplex amplicon vectors. Cancer Immunol Immunother 1999; 47(5):265–271.PubMedCrossRefGoogle Scholar
  107. 107.
    Hoshino Y, Dalai SK, Wang K et al. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs. J Virol 2005; 79(1):410–418.PubMedCrossRefGoogle Scholar
  108. 108.
    Da Costa XJ, Morrison LA, Knipe DM. Comparison of different forms of herpes simplex replication-defective mutant viruses as vaccines in a mouse model of HSV-2 genital infection. Virology 2001; 288(2):256–263.PubMedCrossRefGoogle Scholar
  109. 109.
    McLean CS, Erturk M, Jennings R et al. Protective vaccination against primary and recurrent disease caused by herpes simplex virus (HSV) type 2 using a genetically disabled HSV-1. J Infect Dis 1994; 170(5):1100–1109.PubMedGoogle Scholar
  110. 110.
    Us D. [Herpes simplex virus vaccine studies: from past to present]. Mikrobiyol Bul 2006; 40(4):413–433.PubMedGoogle Scholar
  111. 111.
    Da Costa X, Kramer MF, Zhu J et al. Construction, phenotypic analysis and immunogenicity of a UL5/UL29 double deletion mutant of herpes simplex virus 2. J Virol 2000; 74(17):7963–7971.PubMedCrossRefGoogle Scholar
  112. 112.
    Ali SA, McLean CS, Boursnell ME et al. Preclinical evaluation of “whole” cell vaccines for prophylaxis and therapy using a disabled infectious single cycle-herpes simplex virus vector to transduce cytokine genes. Cancer Res 2000; 60(6):1663–1670.PubMedGoogle Scholar
  113. 113.
    Bozac A, Berto E, Vasquez F et al. Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T-cell responses. Vaccine 2006; 24(49–50):7148–7158.PubMedCrossRefGoogle Scholar
  114. 114.
    Fiorentini S, Becker PD, Marini E et al. HIV-1 matrix protein p17 modulates in vivo preactivated murine T-cell response and enhances the induction of systemic and mucosal immunity against intranasally co-administered antigens. Viral Immunol 2006; 19(2):177–188.PubMedCrossRefGoogle Scholar
  115. 115.
    Murphy CG, Lucas WT, Means RE et al. Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol 2000; 74(17):7745–7754.PubMedCrossRefGoogle Scholar
  116. 116.
    Chou J, Kern ER, Whitley RJ et al. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250(4985):1262–1266.PubMedCrossRefGoogle Scholar
  117. 117.
    Meignier B, Martin B, Whitley RJ et al. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis 1990; 162(2):313–321.PubMedGoogle Scholar
  118. 118.
    Spector FC, Kern ER, Palmer J et al. Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs. J Infect Dis 1998; 177(5):1143–1154.PubMedCrossRefGoogle Scholar
  119. 119.
    Prichard MN, Kaiwar R, Jackman WT et al. Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs. Vaccine 2005; 23(46–47):5424–5431.PubMedCrossRefGoogle Scholar
  120. 120.
    Bernstein DI, Ireland J, Bourne N. Pathogenesis of acyclovir-resistant herpes simplex type 2 isolates in animal models of genital herpes: models for anti-viral evaluations. Antiviral Res 2000; 47(3):159–169.PubMedCrossRefGoogle Scholar
  121. 121.
    Bernstein DI, Stanberry LR. Herpes simplex virus vaccines. Vaccine 1999; 17(13–14):1681–1689.PubMedCrossRefGoogle Scholar
  122. 122.
    Walker J, Leib DA. Protection from primary infection and establishment of latency by vaccination with a herpes simplex virus type 1 recombinant deficient in the virion host shutoff (vhs) function. Vaccine 1998; 16(1):1–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Aurelian L, Kokuba H, Smith CC. Vaccine potential of a herpes simplex virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP 10). Vaccine 1999; 17(15–16): 1951–1963.PubMedCrossRefGoogle Scholar
  124. 124.
    Garrido JJ, Alonso MT, Lim F et al. Defining responsiveness of avian cochlear neurons to brain-derived neurotrophic factor and nerve growht factor by HSV-1-mediated gene transfer. J Neurochem 1998; 70(6):2336–2346.PubMedGoogle Scholar
  125. 125.
    Pakzaban P, Geller AI, Isacson O. Effect of exogenous nerve growth factor on neurotoxicity of and neuronal gene delivery by a herpes simplex amplicon vector in the rat brain. Hum Gene Ther 1994; 5(8):987–995.PubMedCrossRefGoogle Scholar
  126. 126.
    Geschwind MD, Hartnick CJ, Liu W et al. Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration. Hum Gene Ther 1996; 7(2):173–182.PubMedCrossRefGoogle Scholar
  127. 127.
    Sortwell CE, Bowers WJ, Counts SE et al. Effects of ex vivo transduction of mesencephalic reaggregates with bcl-2 on grafted dopamine neuron survival. Brain Res 2007; 1134(1):33–44.PubMedCrossRefGoogle Scholar
  128. 128.
    Antonawich FJ, Federoff HJ, Davis JN. BCL-2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia. Exp Neurol 1999; 156(1):130–137.PubMedCrossRefGoogle Scholar
  129. 129.
    Hoehn B, Ringer TM, Xu L et al. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. J Cereb Blood Flow Metab 2001; 21(11):1303–1309.PubMedCrossRefGoogle Scholar
  130. 130.
    Wang H, Cheng E, Brooke S et al. Over-expression of anti-oxidant enzymes protects cultured hippocampal and cortical neurons from necrotic insults. J Neurochem 2003; 87(6):1527–1534.PubMedGoogle Scholar
  131. 131.
    Adrover MF, Guyot-Revol V, Cheli VT et al. Hippocampal infection with HSV-1-derived vectors expressing an NMDAR1 antisense modifies behavior. Genes Brain Behav 2003; 2(2):103–113.PubMedCrossRefGoogle Scholar
  132. 132.
    Cheli VT, Adrover MF, Blanco C et al. Gene transfer of NMDAR1 subunit sequences to the rat CNS using herpes simplex virus vectors interfered with habituation. Cell Mol Neurobiol 2002; 22(3):303–314.PubMedCrossRefGoogle Scholar
  133. 133.
    Neill JC, Sarkisian MR, Wang Y et al. Enhanced auditory reversal learning by genetic activation of protein kinase C in small groups of rat hippocampal neurons. Brain Res Mol Brain Res 2001; 93(2):127–136.PubMedCrossRefGoogle Scholar
  134. 134.
    Brooks AI, Cory-Slechta DA, Bowers WJ et al. Enhanced learning in mice parallels vector-mediated nerve growth factor expression in hippocampus. Hum Gene Ther 2000; 11(17):2341–2352.PubMedCrossRefGoogle Scholar
  135. 135.
    Sun M, Zhang GR, Kong L et al. Correction of a rat model of Parkinson’s disease by coexpression of tyrosine hydroxylase and aromatic amino acid decarboxylase from a helper virus-free herpes simplex virus type 1 vector. Hum Gene Ther 2003; 14(5):415–424.PubMedCrossRefGoogle Scholar
  136. 136.
    Sun M, Kong L, Wang X et al. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res 2005; 1052(2):119–129.PubMedCrossRefGoogle Scholar
  137. 137.
    Geller AI, Yu L, Wang Y et al. Helper virus-free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson’s disease and other neurological disorders. Exp Neurol 1997; 144(1):98–102.PubMedCrossRefGoogle Scholar
  138. 138.
    Geller AI, During MJ, Oh YJ et al. An HSV-1 vector expressing tyrosine hydroxylase causes production and release of L-dopa from cultured rat striatal cells. J Neurochem 1995; 64(2):487–496.PubMedCrossRefGoogle Scholar
  139. 139.
    During MJ, Naegele JR, O’Malley KL et al. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase. Science 1994; 266(5189):1399–1403.PubMedCrossRefGoogle Scholar
  140. 140.
    Fraefel C, Mendes-Madeira A, Mabon O et al. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors. Gene Ther 2005; 12(16):1283–1288.PubMedCrossRefGoogle Scholar
  141. 141.
    Wade-Martins R, Smith ER, Tyminski E et al. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19(11):1067–1070.PubMedCrossRefGoogle Scholar
  142. 142.
    Inoue R, Moghaddam KA, Ranasinghe M et al. Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Ther 2004; 11(15):1195–1204.PubMedCrossRefGoogle Scholar
  143. 143.
    Xing W, Baylink D, Kesavan C et al. HSV-1 amplicon-mediated transfer of 128-kb BMP-2 genomic locus stimulates osteoblast differentiation in vitro. Biochem Biophys Res Commun 2004; 319(3):781–786.PubMedCrossRefGoogle Scholar
  144. 144.
    Burton EA, Fink DJ, Glorioso JC. Replication-defective genomic HSV gene therapy vectors: design production and CNS applications. Curr Opin Mol Ther 2005; 7(4):326–336.PubMedGoogle Scholar
  145. 145.
    Frampton AR Jr, Goins WF, Nakano et al. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005; 12(11):891–901.PubMedCrossRefGoogle Scholar
  146. 146.
    Simonato M, Manservigi R, Marconi P et al. Gene transfer into neurones for the molecular analysis of behaviour: focus on herpes simplex vectors. Trends Neurosci 2000; 23(5):183–190.PubMedCrossRefGoogle Scholar
  147. 147.
    Simonato M, Marconi P, Glorioso J et al. Molecular analysis of behavior by gene transfer into neurons with herpes simplex vectors. Brain Res 1999; 835(1):37–45.PubMedCrossRefGoogle Scholar
  148. 148.
    Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson’s disease. Gene Ther 2003; 10(20):1721–1727.PubMedCrossRefGoogle Scholar
  149. 149.
    Yamada M, Oligino T, Mata M et al. Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci USA 1999; 96(7):4078–4083.PubMedCrossRefGoogle Scholar
  150. 150.
    Glorioso JC, Fink DJ. Use of HSV vectors to modify the nervous system. Curr Opin Drug Discov Devel 2002; 5(2):289–295.PubMedGoogle Scholar
  151. 151.
    Hong CS, Goins WF, Goss JR et al. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-beta peptide in vivo. Gene Ther 2006; 13(14):1068–1079.PubMedCrossRefGoogle Scholar
  152. 152.
    Goss JR, Goins WF, Lacomis D et al. Herpes simplex-mediated gene transfer of nerve growth factor protects against peripheral neuropathy in streptozotocin-induced diabetes in the mouse. Diabetes 2002; 51(7):2227–2232.PubMedCrossRefGoogle Scholar
  153. 153.
    Goss JR, Mata M, Goins WF et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther 2001; 8(7):551–556.PubMedCrossRefGoogle Scholar
  154. 154.
    Martino S, Marconi P, Tancini B et al. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 2005; 14(15):2113–2123.PubMedCrossRefGoogle Scholar
  155. 155.
    Lanzi G, Ottolini A. Classification of neuromuscular diseases. Monaldi Arch Chest Dis 1993; 48(1):62–64.PubMedGoogle Scholar
  156. 156.
    Chao MV. Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J Neurosci Res 2000; 59(3):353–355.PubMedCrossRefGoogle Scholar
  157. 157.
    Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci 1993; 13(7):2739–2748.PubMedGoogle Scholar
  158. 158.
    Marconi P, Zucchini S, Berto E et al. Effects of defective herpes simplex vectors expressing neurotrophic factors on the proliferation and differentiation of nervous cells in vivo. Gene Ther 2004.Google Scholar
  159. 159.
    Perez MC, Hunt SP, Coffin RS et al. Comparative analysis of genomic HSV vectors for gene delivery to motor neurons following peripheral inoculation in vivo. Gene Ther 2004; 11(13):1023–1032.PubMedCrossRefGoogle Scholar
  160. 160.
    Palmer JA, Branston RH, Lilley CE et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 2000; 74(12):5604–5618.PubMedCrossRefGoogle Scholar
  161. 161.
    Braz J, Beaufour C, Coutaux A et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001; 21(20):7881–7888.PubMedGoogle Scholar
  162. 162.
    Liu X, Brandt CR, Gabelt BT et al. Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp Eye Res 1999; 69(4):385–395.PubMedCrossRefGoogle Scholar
  163. 163.
    Spencer B, Agarwala S, Miskulin M et al. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest Ophthalmol Vis Sci 2000; 41(6):1392–1401.PubMedGoogle Scholar
  164. 164.
    Kuriyama S, Nakatani T, Masui K et al. Bystander effect caused by suicide gene expression indicates the feasibility of gene therapy for hepatocellular carcinoma. Hepatology 1995; 22(6):1838–1846.PubMedGoogle Scholar
  165. 165.
    Vile RG, Hart IR. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res 1993; 53(17):3860–3864.PubMedGoogle Scholar
  166. 166.
    Chen CY, Chang YN, Ryan P et al. Effect of herpes simplex virus thymidine kinase expression levels on ganciclovir-mediated cytotoxicity and the “bystander effect”. Hum Gene Ther 1995; 6(11):1467–1476.PubMedCrossRefGoogle Scholar
  167. 167.
    Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997; 3(12):1354–1361.PubMedCrossRefGoogle Scholar
  168. 168.
    Sandmair AM, Loimas S, Puranen P et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000; 11(16):2197–2205.PubMedCrossRefGoogle Scholar
  169. 169.
    Shalev M, Kadmon D, Teh BS et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 2000; 163(6):1747–1750.PubMedCrossRefGoogle Scholar
  170. 170.
    Miletic H, Fischer Y, Litwak S et al. Bystander Killing of Malignant Glioma by Bone Marrow-derived Tumor-Infiltrating Progenitor Cells Expressing a Suicide Gene. Mol Ther 2007; 15(7):1373–1381.PubMedCrossRefGoogle Scholar
  171. 171.
    Moolten FL, Wells JM. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82(4):297–300.PubMedCrossRefGoogle Scholar
  172. 172.
    Grandi P, Spear M, Breakefield XO et al. Targeting HSV amplicon vectors. Methods 2004; 33(2):179–186.PubMedCrossRefGoogle Scholar
  173. 173.
    Grandi P, Wang S, Schuback D et al. HSV-1 virions engineered for specific binding to cell surface receptors. Mol Ther 2004; 9(3):419–427.PubMedCrossRefGoogle Scholar
  174. 174.
    Nakano K, Asano R, Tsumoto K et al. Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther 2005; 11(4):617–626.PubMedCrossRefGoogle Scholar
  175. 175.
    Shah K, Breakefield XO. HSV amplicon vectors for cancer therapy. Curr Gene Ther. 2006; 6(3):361–370.PubMedCrossRefGoogle Scholar
  176. 176.
    Pin RH, Reinblatt M, Bowers WJ et al. Herpes simplex virus amplicon delivery of a hypoxia-inducible angiogenic inhibitor blocks capillary formation in hepatocellular carcinoma. J Gastrointest Surg 2004; 8(7):812–822; discussion 822–813.PubMedCrossRefGoogle Scholar
  177. 177.
    Reinblatt M, Pin RH, Bowers WJ et al. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma. Ann Surg Oncol 2005; 12(12):1025–1036.PubMedCrossRefGoogle Scholar
  178. 178.
    Zibert A, Thomassen A, Muller L et al. Herpes simplex virus type-1 amplicon vectors for vaccine generation in acute lymphoblastic leukemia. Gene Ther 2005; 12(23):1707–1717.PubMedCrossRefGoogle Scholar
  179. 179.
    Tolba KA, Bowers WJ, Muller J et al. Herpes simplex virus (HSV) amplicon-mediated codelivery of secondary lymphoid tissue chemokine and CD40L results in augmented anti-tumor activity. Cancer Res 2002; 62(22):6545–6551.PubMedGoogle Scholar
  180. 180.
    Mizuno H, Yanoma S, Nishimura G et al. Therapeutic efficiency of IL-2 gene transduced tumor vaccine for head and neck carcinoma. Cancer Lett 2000; 152(2):175–185.PubMedCrossRefGoogle Scholar
  181. 181.
    Herrlinger U, Jacobs A, Quinones A et al. Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 2000; 11(10):1429–1438.PubMedCrossRefGoogle Scholar
  182. 182.
    Lu PY, Xie F, Woodle MC. In vivo application of RNA interference: from functional genomics to therapeutics. Adv Genet 2005; 54:117–142.PubMedGoogle Scholar
  183. 183.
    Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 2005; 353(17):1768–1771.PubMedCrossRefGoogle Scholar
  184. 184.
    Saydam O, Glauser DL, Heid I et al. Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo. Mol Ther 2005; 12(5):803–812.PubMedCrossRefGoogle Scholar
  185. 185.
    Sabbioni S, Callegari E, Manservigi M et al. Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA. Gene Ther 2007; 14(5):459–464.PubMedCrossRefGoogle Scholar
  186. 186.
    Aghi M, Kramm CM, Chou TC et al. Synergistic anti-cancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst 1998; 90(5):370–380.PubMedCrossRefGoogle Scholar
  187. 187.
    Aghi M, Hochberg F, Breakefield XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000; 2(3):148–164.PubMedCrossRefGoogle Scholar
  188. 188.
    Wang S, Qi J, Smith M et al. Antitumor effects on human melanoma xenografts of an amplicon vector transducing the herpes thymidine kinase gene followed by ganciclovir. Cancer Gene Ther 2002; 9(1):1–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Rainov NG, Dobberstein KU, Sena-Esteves M et al. New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. Hum Gene Ther 1998; 9(9):1261–1273.PubMedCrossRefGoogle Scholar
  190. 190.
    Jacobs AH, Rueger MA, Winkeler A et al. Imaging-guided gene therapy of experimental gliomas. Cancer Res 2007; 67(4):1706–1715.PubMedCrossRefGoogle Scholar
  191. 191.
    Jacobs AH, Winkeler A, Hartung M et al. Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 2003; 14(3):277–297.PubMedCrossRefGoogle Scholar
  192. 192.
    Hoffmann D, Wildner O. Comparison of herpes simplex virus-and conditionally replicative adenovirus-based vectors for glioblastoma treatment. Cancer Gene Ther 2007; 14(7):627–639.PubMedCrossRefGoogle Scholar
  193. 193.
    Hoffmann D, Bangen JM, Bayer W et al. Synergy between expression of fusogenic membrane proteins, chemotherapy and facultative virotherapy in colorectal cancer. Gene Ther 2006; 13(21):1534–1544.PubMedCrossRefGoogle Scholar
  194. 194.
    Lee CY, Bu LX, Rennie PS et al. An HSV-1 amplicon system for prostate-specific expression of ICP4 to complement oncolytic viral replication for in vitro and in vivo treatment of prostate cancer cells. Cancer Gene Ther 2007; 14(7):652–660.PubMedCrossRefGoogle Scholar
  195. 195.
    Carew JF, Federoff H, Halterman M et al. Efficient gene transfer to human squamous cell carcinomas by the herpes simplex virus type 1 amplicon vector. Am J Surg 1998; 176(5):404–408.PubMedCrossRefGoogle Scholar
  196. 196.
    Carew JF, Kooby DA, Halterman MW et al. A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther 2001; 4(3):250–256.PubMedCrossRefGoogle Scholar
  197. 197.
    Wang GY, Ho IA, Sia KC et al. Engineering an improved cell cycle-regulatable herpes simplex virus Type 1 amplicon vector with enhanced transgene expression in proliferating cells yet attenuated activities in resting cells. Hum Gene Ther 2007; 18(3):222–231.PubMedCrossRefGoogle Scholar
  198. 198.
    Ho IA, Hui KM, Lam PY. Targeting proliferating tumor cells via the transcriptional control of therapeutic genes. Cancer Gene Ther 2006; 13(1):44–52.PubMedCrossRefGoogle Scholar
  199. 199.
    Ho IA, Hui KM, Lam PY. Glioma-specific and cell cycle-regulated herpes simplex virus type 1 amplicon viral vector. Hum Gene Ther 2004; 15(5):495–508.PubMedCrossRefGoogle Scholar
  200. 200.
    Lam PY, Sia KC, Khong JH et al. An efficient and safe herpes simplex virus type 1 amplicon vector for transcriptionally targeted therapy of human hepatocellular carcinomas. Mol Ther 2007; 15(6):1129–1136.PubMedGoogle Scholar
  201. 201.
    Shah K, Tung CH, Breakefield XO et al. In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 2005; 11(6):926–931.PubMedCrossRefGoogle Scholar
  202. 202.
    Shah K, Tung CH, Yang K et al. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 2004; 64(9):3236–3242.PubMedCrossRefGoogle Scholar
  203. 203.
    Shah K, Tang Y, Breakefield X et al. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 2003; 22(44):6865–6872.PubMedCrossRefGoogle Scholar
  204. 204.
    Raffaella R, Gioia D, De Andrea M et al. The interferon-inducible IFI16 gene inhibits tube morphogenesis and proliferation of primary, but not HPV16 E6/E7-immortalized human endothelial cells. Exp Cell Res 2004; 293(2):331–345.PubMedCrossRefGoogle Scholar
  205. 205.
    Niranjan A, Wolfe D, Tamura M et al. Treatment of rat gliosarcoma brain tumors by HSV-based multigene therapy combined with radiosurgery. Mol Ther 2003; 8(4):530–542.PubMedCrossRefGoogle Scholar
  206. 206.
    Berto E, Bozac A, Volpi I et al. Antitumor effects of nonreplicative herpes simplex vectors expressing anti-angiogenic proteins and thymidine kinase on Lewis lung carcinoma establishment and growth. Cancer Gene Ther 2007.Google Scholar
  207. 207.
    Berto E, Bozac A, Marconi P. Development and application of replication-incompetent HSV-1-based vectors. Gene Ther 2005; 12Suppl 1:S98–102.CrossRefGoogle Scholar
  208. 208.
    Moriuchi S, Wolfe D, Tamura M et al. Double suicide gene therapy using a replication defective herpes simplex virus vector reveals reciprocal interference in a malignant glioma model. Gene Ther 2002; 9(9):584–591.PubMedCrossRefGoogle Scholar
  209. 209.
    Moriuchi S, Krisky DM, Marconi PC et al. HSV vector cytotoxicity is inversely correlated with effective TK/GCV suicide gene therapy of rat gliosarcoma. Gene Ther 2000; 7(17):1483–1490.PubMedCrossRefGoogle Scholar
  210. 210.
    Niranjan A, Moriuchi S, Lunsford LD et al. Effective treatment of experimental glioblastoma by HSV vector-mediated TNF alpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration. Mol Ther 2000; 2(2):114–120.PubMedCrossRefGoogle Scholar
  211. 211.
    Marconi P, Tamura M, Moriuchi S et al. Connexin 43-enhanced suicide gene therapy using herpesviral vectors. Mol Ther 2000; 1(1):71–81.PubMedCrossRefGoogle Scholar
  212. 212.
    Moriuchi S, Oligino T, Krisky D et al. Enhanced tumor cell killing in the presence of ganciclovir by herpes simplex virus type 1 vector-directed coexpression of human tumor necrosis factor-alpha and herpes simplex virus thymidine kinase. Cancer Res 1998; 58(24):5731–5737.PubMedGoogle Scholar
  213. 213.
    Advani SJ, Chung SM, Yan SY et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res 1999; 59(9):2055–2058.PubMedGoogle Scholar
  214. 214.
    Todo T, Rabkin SD, Sundaresan P et al. Systemic anti-tumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 1999; 10(17):2741–2755.PubMedCrossRefGoogle Scholar
  215. 215.
    Todo T, Feigenbaum F, Rabkin SD et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther 2000; 2(6):588–595.PubMedCrossRefGoogle Scholar
  216. 216.
    Toda M, Rabkin SD, Kojima H et al. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 1999; 10(3):385–393.PubMedCrossRefGoogle Scholar
  217. 217.
    Mullen JT, Kasuya H, Yoon SS et al. Regulation of herpes simplex virus 1 replication using tumor-associated promoters. Ann Surg 2002; 236(4):502–512; discussion 512–503.PubMedCrossRefGoogle Scholar
  218. 218.
    Markert JM, Parker JN, Gillespie GY et al. Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 2001; 8(1):17–22.PubMedGoogle Scholar
  219. 219.
    Markert JM, Parker JN, Buchsbaum DJ et al. Oncolytic HSV-1 for the treatment of brain tumours. Herpes 2006; 13(3):66–71.PubMedGoogle Scholar
  220. 220.
    Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38(3):177–192.PubMedCrossRefGoogle Scholar
  221. 221.
    Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252(5007):854–856.PubMedCrossRefGoogle Scholar
  222. 222.
    Jeyaretna DS, Rabkin SD, Martuza RL. Oncolytic herpes simplex virus therapy for peripheral nerve tumors. Neurosurg Focus 2007; 22(6):E4.PubMedCrossRefGoogle Scholar
  223. 223.
    Kramm CM, Chase M, Herrlinger U et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997; 8(17):2057–2068.PubMedCrossRefGoogle Scholar
  224. 224.
    Dambach MJ, Trecki J, Martin N et al. Oncolytic viruses derived from the gamma34.5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein. Mol Ther 2006; 13(5):891–898.PubMedCrossRefGoogle Scholar
  225. 225.
    Cassady KA, Gross M, Roizman B. The second-site mutation in the herpes simplex virus recombinants lacking the gamma134.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol 1998; 72(9):7005–7011.PubMedGoogle Scholar
  226. 226.
    Andreansky S, Soroceanu L, Flotte ER et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 1997; 57(8):1502–1509.PubMedGoogle Scholar
  227. 227.
    Boviatsis EJ, Scharf JM, Chase M et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther 1994; 1(5):323–331.PubMedGoogle Scholar
  228. 228.
    Carroll NM, Chase M, Chiocca EA et al. The effect of ganciclovir on herpes simplex virus-mediated oncolysis. J Surg Res 1997; 69(2):413–417.PubMedCrossRefGoogle Scholar
  229. 229.
    Chambers R, Gillespie GY, Soroceanu L et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc natl Acad Sci USA 1995; 92(5):1411–1415.PubMedCrossRefGoogle Scholar
  230. 230.
    Chou J, Roizman B. The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn+. J Virol 1990; 64(3):1014–1020.PubMedGoogle Scholar
  231. 231.
    Liu BL, Robinson M, Han ZQ et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating and anti-tumour properties. Gene Ther 2003; 10(4):292–303.PubMedCrossRefGoogle Scholar
  232. 232.
    Mineta T, Rabkin SD, Yazaki T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1(9):938–943.PubMedCrossRefGoogle Scholar
  233. 233.
    Hunter WD, Martuza RL, Feigenbaum F et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999; 73(8):6319–6326.PubMedGoogle Scholar
  234. 234.
    Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000; 7(10):867–874.PubMedCrossRefGoogle Scholar
  235. 235.
    Rampling R, Cruickshank G, Papanastassiou V et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000; 7(10):859–866.PubMedCrossRefGoogle Scholar
  236. 236.
    Harrow S, Papanastassiou V, Harland J et al. HSV1716 injection into the brain adjacent to tumoru following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 2004.Google Scholar
  237. 237.
    Randazzo BP, Kucharczuk JC, Litzky LA et al. Herpes simplex 1716—an ICP 34.5 mutant—is severely replication restricted in human skin xenografts in vivo. Virology 1996; 223(2):392–395.PubMedCrossRefGoogle Scholar
  238. 238.
    Randazzo BP, Kesari S, Gesser RM et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995; 211(1):94–101.PubMedCrossRefGoogle Scholar
  239. 239.
    Kooby DA, Carew JF, Halterman MW et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13(11):1325–1334.PubMedGoogle Scholar
  240. 240.
    Cozzi PJ, Burke PB, Bhargav A et al. Oncolytic viral gene therapy for prostate cancer using two attenuated, replication-competent, genetically engineered herpes simplex viruses. Prostate 2002; 53(2):95–100.PubMedCrossRefGoogle Scholar
  241. 241.
    McAuliffe PF, Jarnagin WR, Johnson P et al. Effective treatment of pancreatic tumors with two multimutated herpes simplex oncolytic viruses. J Gastrointest Surg 2000; 4(6):580–588.PubMedCrossRefGoogle Scholar
  242. 242.
    Kasuya H, Takeda S, Nomoto S et al. The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 2005; 12(9):725–736.PubMedCrossRefGoogle Scholar
  243. 243.
    Carew JF, Kooby DA, Halterman MW et al. Selective infection and cytolysis of human head and neck squamous cell carcinoma with sparing of normal mucosa by a cytotoxic herpes simplex virus type 1 (G207). Hum Gene Ther 1999; 10(10):1599–1606.PubMedCrossRefGoogle Scholar
  244. 244.
    Meignier B, Longnecker R, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 1988; 158(3):602–614.PubMedGoogle Scholar
  245. 245.
    Andreansky S, He B, van Cott J et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther 1998; 5(1):121–130.PubMedCrossRefGoogle Scholar
  246. 246.
    Parker JN, Gillespie GY, Love CE et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97(5):2208–2213.PubMedCrossRefGoogle Scholar
  247. 247.
    Wong RJ, Patel SG, Kim S et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001; 12(3):253–265.PubMedCrossRefGoogle Scholar
  248. 248.
    Todo T, Martuza RL, Dallman MJ et al. In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent anti-tumor immunity. Cancer Res 2001; 61(1):153–161.PubMedGoogle Scholar
  249. 249.
    Nakamura H, Mullen JT, Chandrasekhar S et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001; 61(14):5447–5452.PubMedGoogle Scholar
  250. 250.
    Pawlik TM, Nakamura H, Mullen JT et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 2002; 95(5):1171–1181.PubMedCrossRefGoogle Scholar
  251. 251.
    Aghi M, Chou TC, Suling K et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 1999; 59(16):3861–3865.PubMedGoogle Scholar
  252. 252.
    Mohr I, Sternberg D, Ward S et al. A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 2001; 75(11):5189–5196.PubMedCrossRefGoogle Scholar
  253. 253.
    He B, Chou J, Brandimarti R et al. Suppression of the phenotype of gamma(1)34.5-herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol 1997; 71(8):6049–6054.PubMedGoogle Scholar
  254. 254.
    Taneja S, MacGregor J, Markus S et al. Enhanced anti-tumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci USA 2001; 98(15):8804–8808.PubMedCrossRefGoogle Scholar
  255. 255.
    Jorgensen TJ, Katz S, Wittmack EK et al. Ionizing radiation does not alter the anti-tumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia 2001; 3(5):451–456.PubMedCrossRefGoogle Scholar
  256. 256.
    Nakamori M, Fu X, Pettaway CA et al. Potent anti-tumor activity after systemic delivery of a doubly fusogenic oncolytic herpes simplex virus against metastatic prostate cancer. Prostate 2004; 60(1):53–60.PubMedCrossRefGoogle Scholar
  257. 257.
    Fu X, Tao L, Jin A et al. Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral anti-tumor effect. Mol Ther 2003; 7(6):748–754.PubMedCrossRefGoogle Scholar
  258. 258.
    Bennett DL, Boucher TJ, Armanini MP et al. The glial cell line-derived neurotrophic factor family receptor components are differentially regulated within sensory neurons after nerve injury. J Neurosci 2000; 20(1):427–437.PubMedGoogle Scholar
  259. 259.
    Martino G, Poliani PL, Furlan R et al. Cytokine therapy in immune-mediated demyelinating diseases of the central nervous system: a novel gene therapy approach. J Neuroimmunol 2000; 107(2):184–190.PubMedCrossRefGoogle Scholar
  260. 260.
    Wade-Martins R, Saeki Y, Chiocca EA. Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 2003; 7(5 Pt 1):604–612.PubMedCrossRefGoogle Scholar
  261. 261.
    Wade-Martins R, White RE, Kimura H et al. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol 2000; 18(12):1311–1314.PubMedCrossRefGoogle Scholar
  262. 262.
    Anderson DB, Laquerre S, Ghosh K et al. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol 2000; 74(5):2481–2487.PubMedCrossRefGoogle Scholar
  263. 263.
    Zhou G, Roizman B. Construction and properties of a herpes simplex virus 1 designed to enter cells solely via the IL-13alpha2 receptor. Proc Natl Acad Sci USA 2006; 103(14):5508–5513.PubMedCrossRefGoogle Scholar
  264. 264.
    Zhou G, Roizman B. Separation of receptor-binding and profusogenic domains of glycoprotein D of herpes simplex virus 1 into distinct interacting proteins. Proc Natl Acad Sci USA 2007; 104(10):4142–4146.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Peggy Marconi
    • 1
  • Rafaela Argnani
    • 1
  • Alberto L. Epstein
    • 2
  • Roberto Manservigi
  1. 1.Department of Experimental and Diagnostic Medicine-Section of MicrobiologyUniversity of FerraraFerraraItaly
  2. 2.Centre de Génétique Moléculaire et CellulaireUniversité LyonVilleurbanneFrance

Personalised recommendations