Comparative Forecasting and a Test for Persistence in the El Niño Southern Oscillation

  • Belinda A. Chiera
  • Jerzy A. Filar
  • Daniel S. Zachary
  • Adrian H. Gordon
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 138)


We present an analysis of two separate single-indicator forecasting methods for the El Nino Southern Oscillation based on oscillation persistence. We use the Southern Oscillation Index (SOI) to produce short term 5 month forecasts and a Bayesian approach to explore SOI persistence, with results compared to a benchmarking Taylor Series expansion.We find signal persistence is important when forecasting more than a few months and the models presented may provide a relatively simple approach to environmental risk forecasting in situations where the underlying phenomenon exhibits substantial persistence.


Indian Summer Monsoon Southern Oscillation Index Indian Summer Monsoon Rainfall Probabilistic Forecast Bayesian Forecast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barnett, T.P., Latif, M., Graham, N., Flugel, M., Pazan, S., White, W. (1993): ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid couple ocean-atmosphere model. J. Climate, 6, pp. 1545–1566.CrossRefGoogle Scholar
  2. [2]
    Brier G. W.: Verification of forecasts expressed in terms of probability, Monthly Weather Review, 78, pp.1–3 (1950)CrossRefGoogle Scholar
  3. [3]
    Bureau of Meteorology (The), Commonwealth of Australia: Elnino Statistics,,cited2008.
  4. [4]
    Chagnon, S.A.: Economic Impacts of Climate Conditions in the United States: Past, Present and Future, Climatic Change, 68, pp.1–2 (2005)CrossRefGoogle Scholar
  5. [5]
    Chiera, B.A.: Australian Sea Levels, ENSO and Green house Forcing: Modelling and Predictability Analysis, Ph.D. Thesis, University of South Australia, (2000)Google Scholar
  6. [6]
    Coelho, C.A.S., Pezzulli, S., Balmaseda, M., Doblas-Reyes, F. J., D. B. Stephenson, D.B.: Forecast calibration and combination: A simple Bayesian approach for ENSO, Journal of Climate. 17 (7), pp.1504–1516 (2004)CrossRefGoogle Scholar
  7. [7]
    Department of Natural Resources and Mines (State of Queensland)., cited 2008
  8. [8]
    Duffie, D., Richardson, H.R.: Mean-variance hedging in continuous time, Ann. Appl. Prob. 1, pp.1–15 (1991)CrossRefGoogle Scholar
  9. [9]
    Follmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. Contributions of Mathematical Economics in Honor of Gerard Debreu. H. Hidenbrand, A. Mas-Colell, (eds.) pp. 205–223. North Holland, Amsterdam (1986)Google Scholar
  10. [10]
    Gordon A.H.: Forced oscillations with damping proportional to velocity on a beta plane : the Southern Oscillation connection, Environmental Modeling and Assessment. 1, pp.243–261 (1996)CrossRefGoogle Scholar
  11. [11]
    Gray, W. M., Sheaffer, J.D., Knaff, J.A.: Influence of the stratospheric QBO on ENSO variability, J. Meteor. Soc. of Japan, 70, 5, pp.975–995 (1992)Google Scholar
  12. [12]
    James, R.C.: El Niño. Mathematics Magazine. 25, 21–31, 269–272 (1952); 26 pp.21–31 (1952)CrossRefGoogle Scholar
  13. [13]
    Katz R.W.: Sir Gilbert Walker and a connection between El Niño and Statistics Statistical Science, Vol 17, No. 1, pp.97–112 (2002)CrossRefGoogle Scholar
  14. [14]
    Knaff, J. A.: Evidence of a stratospheric QBO modulation of tropical convection, Dept. of Atmos. Sci. Paper No. 520, Colo. State Univ., Ft. Collins, CO, p. 91 (1993)Google Scholar
  15. [15]
    Landscheidt T.: Forecast of global temperature, El Nino, and cloud coverage by astronomical means, In: Bate, R. : Global Warming. The continuing debate (eds.) The European Science and Environment Forum (ESEF) pp.172–183 Cambridge (1998)Google Scholar
  16. [16]
    Landscheidt, T.: Long-range forecasts of solar cycles and climate change. In: Rampino, M. R., Sanders, J. E., Newman, W. S. and Kunigsson, L. K., (eds.) : Climate. History, Periodicity, and predictability pp. 421–445 New York, van Nostrand Reinhold (1987)Google Scholar
  17. [17]
    Landscheidt T.: Solar oscillations, sunspot cycles, and climatic change, In : McCormac, B. M., Hsg. (eds.): Weather and climate responses to solar variations pp. 301–304. Boulder, Associated University Press (1983)Google Scholar
  18. [18]
    Maity, R., Nagesh Kumar, D.: Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO), J. Geophys. Res., 111 (2006)Google Scholar
  19. [19]
    Mason, S. J.,Mimmack, G.M.: Comparison of some statistical methods of probabilistic forecasting of ENSO. J. Climate. 15, pp.8–29 (2002)CrossRefGoogle Scholar
  20. [20]
    NOAA, Climate Prediction Center,
  21. [21]
    Patt A.: Communication probabilistic forecasts to decision makers: A case study of Zimbabwe. BCSIA, Environment and Natural Resources Program, Kennedy School of Government, Harvard University. Discussion paper 2000–19,
  22. [22]
    Peixoto, J. P., Oort, A.H. 1992: Physics of climate. American Institute of Physics, New York (1992)Google Scholar
  23. [23]
    Pudvokin, M. Veretenenko, S.: Cloudiness decreases associated with Forbush decreases of galactic cosmic rays. J. Atm. Terr. Phys. 57, pp.1349–1355 (1955)CrossRefGoogle Scholar
  24. [24]
    Quinn W. H., Neal T. V., de Mayolo, S.E.A.: El Niño occurrences over the past four and a half centuries. Journ. of Geophys. Res. 92, 14, pp.449–461 (1987)Google Scholar
  25. [25]
    Ramage C. S.: El Niño. Scient. American. pp.59–61 (1986)Google Scholar
  26. [26]
    Ruizdeelvira, A., Ortizbevia, M.J.: Application of statistical techniques to the analysis and prediction of ENSO: Bayesian oscillation patterns as a prediction scheme, Dynamics of atmospheres and oceans. 22 (1–2), pp.91–114 (1995)CrossRefGoogle Scholar
  27. [27]
    Schopf, P. S., Suarez, M.J.: Vacillations in a coupled ocean-atmosphere model. J. Atm. Sci. 45, pp.549–566 (1988)CrossRefGoogle Scholar
  28. [28]
    Solow, A.R., Adams, R.F., Bryant, K.J., Legler, D.M., O'Brien, J.J., McCarl, B.A., Nayda, W., Weiher, R.: The Value of Improved ENSO Prediction to U.S. Agriculture. Climatic Change. 39(1), pp.47–60 (1998)CrossRefGoogle Scholar
  29. [29]
    Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., Marshall, J.: The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 (C9) (2002)Google Scholar
  30. [30]
    Svensmark, H., Friis-Christensen, E.: Variation of cosmic ray flux and global cloud coverage, a missing link in solar-climate relationships, J. Atm. Sol. Terr. Phys. 59, p. 1225 (1997)CrossRefGoogle Scholar
  31. [31]
    Thompson, C.J., Battisti, D.S.: A Linear Stochastic Dynamical Model of ENSO. Part II: Analysis. Journal of Climate, 14 pp.445–465 (2001)CrossRefGoogle Scholar
  32. [32]
    Torrence, C., Webster, P.: The annual cycle of persistence in the El Niño - Southern Oscillation. Quart. J. Roy. Meteor. Soc. 124, pp. 1985–2004 (1988)Google Scholar
  33. [33]
    Trenberth, K.E.: The Definition of El Niño, Bull. Amer. Met. Soc. 78, pp.2771–2777 (1997)CrossRefGoogle Scholar
  34. [34]
    Troup A.J.: The Southern Oscillation, Quarterly Journal of Royal Meteorological Society. 91, pp.490–506 (1965)CrossRefGoogle Scholar
  35. [35]
    Wang, F., Jackson, C. S., Stoffa, P. L., Flügel, M., Chang, P.: A Stochastic Bayesian Approach to Identify the Dynamical Regimes of ENSO. American Geophysical Union. Fall Meeting 2004 Abstract # A14B-06 (2004)Google Scholar
  36. [36]
    Zhang, Y., Wallace, J.M.: Is Climate Variability over the North Pacific a Linear Response to ENSO? Journal of Climate. 9(7), pp.1468–1478. (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Belinda A. Chiera
    • 1
  • Jerzy A. Filar
    • 1
  • Daniel S. Zachary
    • 2
  • Adrian H. Gordon
  1. 1.University of South AustraliaAdelaideAustralia
  2. 2.Centre de Ressources des Technologies pour l’Environnement (CRTE)LuxembourgNetherlands

Personalised recommendations