Robotics in Neurosurgery

  • L. N. Sekhar
  • D. Ramanathan
  • J. Rosen
  • L. J. Kim
  • D. Friedman
  • D. Glozman
  • K. Moe
  • T. Lendvay
  • B. Hannaford


Use of robots in surgery, especially in neurosurgery, has been a fascinating idea since the development of industrial robots. Using the advantages of a robot to complement human limitations could potentially enhance surgical possibilities, other than making it easier and safer. Over the last few decades, much progress has been made in this direction across various disciplines of neurosurgery such as cranial surgery, spinal surgery and radiation therapy. This chapter details the necessity, principles and the future directions of robotics in neurosurgery. Also, the concept of curvilinear robotic surgery and associated instrumentation is discussed.


Robotic Device Minimal Access Surgery Pedicle Screw Placement Slave Robot Stereotactic Procedure 


  1. 1.
    Guru, K.A., Hussain, A., Chandrasekhar, R., Piacente, P., Bienko, M., Glasgow, M., Underwood, W., Wilding, G., Mohler, J.L., Menon, M., Peabody, J.O.: Current status of robot-assisted surgery in urology: a multi-national survey of 297 urologic surgeons. Can. J. Urol. 16, 4736–4741 (2009); discussion 4741Google Scholar
  2. 2.
    Eljamel, M.S.: Robotic neurological surgery applications: accuracy and consistency or pure fantasy? Stereotact. Funct. Neurosurg. 87, 88–93 (2009)CrossRefGoogle Scholar
  3. 3.
    Zimmermann, M., Krishnan, R., Raabe, A., Seifert, V.: Robot-assisted navigated neuroendoscopy. Neurosurgery 51, 1446–1451 (2002); discussion 1451–1442CrossRefGoogle Scholar
  4. 4.
    Zimmermann, M., Krishnan, R., Raabe, A., Seifert, V.: Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir. (Wien) 146, 697–704 (2004)Google Scholar
  5. 5.
    Nathoo, N., Cavusoglu, M.C., Vogelbaum, M.A., Barnett, G.H.: In touch with robotics: neurosurgery for the future. Neurosurgery 56, 421–433 (2005); discussion 421–433CrossRefGoogle Scholar
  6. 6.
    Buckingham, R.A., Buckingham, R.O.: Robots in operating theatres. Br. Med. J. 311, 1479–1482 (1995)Google Scholar
  7. 7.
    Louw, D.F., Fielding, T., McBeth, P.B., Gregoris, D., Newhook, P., Sutherland, G.R.: Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54, 525–536 (2004); discussion 536–527CrossRefGoogle Scholar
  8. 8.
    McBeth, P.B., Louw, D.F., Rizun, P.R., Sutherland, G.R.: Robotics in neurosurgery. Am. J. Surg. 188, 68S–75S (2004)CrossRefGoogle Scholar
  9. 9.
    Hongo, K., Kobayashi, S., Kakizawa, Y., Koyama, J., Goto, T., Okudera, H., Kan, K., Fujie, M.G., Iseki, H., Takakura, K.: NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery 51, 985–988 (2002); discussion 988CrossRefGoogle Scholar
  10. 10.
    Zamorano, L., Li, Q., Jain, S., Kaur, G.: Robotics in neurosurgery: state of the art and future technological challenges. Int. J. Med. Robot. 1, 7–22 (2004)Google Scholar
  11. 11.
    Eljamel, M.S.: Robotic application in epilepsy surgery. Int. J. Med. Robot. 2, 233–237 (2006)Google Scholar
  12. 12.
    Spire, W.J., Jobst, B.C., Thadani, V.M., Williamson, P.D., Darcey, T.M., Roberts, D.W.: Robotic image-guided depth electrode implantation in the evaluation of medically intractable epilepsy. Neurosurg. Focus 25, E19 (2008)CrossRefGoogle Scholar
  13. 13.
    Barzilay, Y., Kaplan, L., Libergall, M.: Robotic assisted spine surgery – a breakthrough or a surgical toy? Int. J. Med. Robot. 4, 195–196 (2008)Google Scholar
  14. 14.
    Pechlivanis, I., Kiriyanthan, G., Engelhardt, M., Scholz, M., Lucke, S., Harders, A., Schmieder, K.: Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34, 392–398 (2009)Google Scholar
  15. 15.
    Fries, G., Perneczky, A.: Endoscope-assisted brain surgery: part 2 – analysis of 380 procedures. Neurosurgery 42, 226–231 (1998); discussion 231–222CrossRefGoogle Scholar
  16. 16.
    Bast, P., Popovic, A., Wu, T., Heger, S., Engelhardt, M., Lauer, W., Radermacher, K., Schmieder, K.: Robot- and computer-assisted craniotomy: resection planning, implant modelling and robot safety. Int. J. Med. Robot. 2, 168–178 (2006)Google Scholar
  17. 17.
    Vespa, P.M.: Multimodality monitoring and telemonitoring in neurocritical care: from microdialysis to robotic telepresence. Curr. Opin. Crit. Care 11, 133–138 (2005)CrossRefGoogle Scholar
  18. 18.
    Pandya, S., Motkoski, J.W., Serrano-Almeida, C., Greer, A.D., Latour, I., Sutherland, G.R.: Advancing neurosurgery with image-guided robotics. J. Neurosurg. (2009)Google Scholar
  19. 19.
    Winckel, C.P., Reznick, R.K., Cohen, R., Taylor, B.: Reliability and construct validity of a structured technical skills assessment form. Am. J. Surg. 167, 423–427 (1994)CrossRefGoogle Scholar
  20. 20.
    Kwoh, Y.S., Hou, J., Jonckheere, E.A., Hayati, S.: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE trans. Biomed. Eng. 35(2), 153–160 (1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. N. Sekhar
    • 1
  • D. Ramanathan
  • J. Rosen
  • L. J. Kim
  • D. Friedman
  • D. Glozman
  • K. Moe
  • T. Lendvay
  • B. Hannaford
  1. 1.Department of Neurological SurgeryUniversity of WashingtonSeattleUSA

Personalised recommendations